

Project IST-511599

RODIN
“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D27

Case Study Demonstrators

Editor: Elena Troubitsyna (Aabo Akademi University, Finland)

Public Document

30th October 2007

http://rodin.cs.ncl.ac.uk/

http://rodin.cs.ncl.ac.uk/

Contributors:

Budi Arief (University of Newcastle upon Tyne, UK),
Michael Butler(University of Southampton, UK),
Alex Iliasov (University of Newcastle upon Tyne, UK),
Dubravka Ilic (Aabo Akademi University, Finland),
Ian Johnson (ATEC Engine Controls Ltd, UK),
Maciej Koutny(University of Newcastle upon Tyne, UK)
Linas Laibinis (Aabo Akademi University, Finland),
Sari Leppänen (Nokia, Finland),
Qaisar Malik (Aabo Akademi University, Finland),

 Mats Neovius (Aabo Akademi University, Finland),
Ian Oliver (Nokia, Finland),
Mike Poppleton (University of Southampton, UK),

 Abdolbaghi Rezazadeh (University of Southampton, UK),
Alexander Romanovsky (University of Newcastle upon Tyne, UK),
Kaisa Sere (Aabo Akademi University, Finland),
Colin Snook (University of Southampton, UK),
Jenny Sorge(University of Southampton, UK),
Elena Troubitsyna (Aabo Akademi University, Finland)

CONTENTS

1 Introduction 4
2 Case Study 1 -- Formal Approaches to Protocol Engineering 6
3 Case Study 2 -- Engine Failure Management System 12
4 Case study 3 -- Formal Techniques within an MDA Context 18
5 Case study 4 -- CDIS Air Traffic Control Display System 20
6 Case study 5 -- Ambient Campus 28

SECTION 1. INTRODUCTION

This document overviews the demonstrators of case studies. The aim of producing the
demonstrators is to evaluate the impact of RODIN on the corresponding domains. The
main body of this deliverable is the set of demonstrators uploaded to sourceforge at
RODIN section. The demonstrators are the formal specifications, reusable abstract
patterns, guidelines, examples of tools use, executable software. Their greatest practical
value is that they can be freely downloaded and reused by anyone who is interested in
application of RODIN methods and tools. The demonstrators in the form of formal
specifications offer the examples of formal models which can be fed into the platform
and analyzed. This promotes “learning by examples”. The demonstrators in the form of
guidelines summarize the experience of application of RODIN methodology and offer a
strategy for developing similar systems from certain application domain. The examples of
tool use demonstrate the benefits of various RODIN tools. Finally executable software
offer tools that can be used to automate formal development and verification. This
deliverable merely serves as the introduction to the demonstrators available from the
web. It contains a brief overview of the demonstrators available for each case study
together with the guidance on how to use the demonstrators.

In Section 2 we overview the demonstrators of case study 1 – Formal Approaches to
Protocol Engineering. The case study investigates the use of formal methods in model-
driven development of communicating systems and communication protocols. The first
demonstrator for this case study is the Lyra UML profile, and formal specifications
modelling intra- and inter-consistency conditions required for checking syntactic and
structural consistency of Lyra UML models. The second demonstrator is an example of
automatic translation of UML models into B specifications using the ATL tool. The third
demonstrator is a large collection of Event-B models for verification of service
decomposition and distribution phases of Lyra and reasoning about fault tolerance. We
also present a formal modelling of parallelism in service execution. Finally, we present
examples of test generation using the developed model-based testing methodology.

Section 3 describes the demonstrators of case study 2 – Engine Failure Management
System (FMS). The use of the RODIN technology is expected to improve accuracy of
modelling the domain in order to reduce the semantic gap that exists between application
requirement and system design and promote re-useability by being able to develop
configurable generic model where other engine variants requiring FMS systems could be
catered for. The demonstrator of case study 2 consists of four parts. The first part is the
animation of compete FMS model, which demonstrates how the domain can be
accurately modeled. The second part encompasses examples of genericity and re-use in
the development. The third part demonstrates the take-up of the development
methodology presented in D26 with the support of UML-B and RODIN. Finally there is a
small collection of examples identifying RODIN methodology pitfalls, which points out
the future research directions.

4

In Section 4 we overview the demonstrators for case study 3 – Formal Techniques within
MDA Context. The demonstrators for this case study come in the form of technical
papers and internal NOKIA reports. The demonstrators address the problems of making
UML modeling more formal and adding rigor to model-driven development. The
demonstrators describe the experience on how to make verification of system properties
easier and friendlier for the engineers. Finally, we point out the work of building
extendable development environment.

In Section 5 we give an overview of demonstrators of case study 4 – CDIS Air Traffic
Control Display System. The major problem spotted in the CDIS development a decade
ago was a poor comprehensiveness of the formal specification, lack of any mechanical
proof of the specification consistency and continuity from the specification to design. To
tackle these problems in RODIN we conducted an experiment – development of a
“vertical” slice of CDIS system in the Event-B formalism. The results of this experiment
constitute the demonstrator for case study 4. Our experiment demonstrates that the
identified issues can be tackled by using refinement to layer in the functionality of the
system in series of steps. This incremental approach modularises the proofs into small
steps making the proof effort amenable to automated proof. Such an incremental
approach also improves the comprehensibility of the formal specification which is
important for maintenance and evolution of the specification.

Finally, in section 6 we overview the demonstrators of case study 5 – Ambient Campus.
The aim of this case study is to investigate the use of formal methods combined with
advanced fault tolerance techniques in developing highly dependable ambient
intelligence applications. The demonstrator shows the entire process of the development
of the Ambient Campus – from informal requirements to formal specification and
checking dynamic properties by Mobility Checker. The development is illustrated by the
screen-shots demonstrating tool use.

Let us note, that the participants of RODIN Industry Day which was held in Paris, on
September 10th, have expressed a strong interest in formal models produced in the case
study developments. Hence we believe that the demonstrators will serve a mechanism for
disseminating RODIN methodology and help to ensure continuity of the project after its
completion.

5

SECTION 2. CASE STUDY 1:
FORMAL APPROACHES IN PROTOCOL ENGINEERING

2.1 Introduction

This section of the D27 report presents the demonstrators produced in case study 1.
The domain of the case study is model-driven development of telecommunication sys-
tems and communicating protocols. In particular, we focus on the service-oriented
approach Lyra developed at the Nokia Research Center. The approach is based on
decomposition / composition techniques. It uses UML2 as itsmodel language.

Currently algorithmic verification is used to verify the correctness of the decompo-
sition steps. However, telecommunication systems tends tobe very large and data
intensive so that the use of model checking is prone to the state explosion problem.
Therefore, the important research area is to investigate how formal top-down (refine-
ment) techniques can help to verify the Lyra development process.

Another important question is applicability of techniquesfor formal reasoning about
fault tolerance in the development of telecommunication systems. In particular, we
have investigated how the fault tolerance mechanisms can beincorporated and verified
within the formalised Lyra development process.

2.2 Demonstrators of RODIN advances

Before presenting the demonstrators for this case study, wegive a brief overview how
the problems mentioned in the introduction have been tackled during the project.

In order to evaluate feasibility of using formal refinement techniques to verify model
decomposition, we have formalised the Lyra development process into the correspond-
ing specification and refinement process of Event-B. The B refinement has been used
to demonstrate the correctness of Lyra decomposition stepsas well as incorporation of
fault tolerance mechanisms. This has been achieved by developing B specification and
refinement patterns reflecting essential Lyra models and transformations.

Moreover, to make our support for the Lyra approach more complete, we have cre-
ated additional automation steps resulting in a tool chain for Lyra-B integration (see
Fig.2.1). In particular, the Lyra UML models to be automatically translated into Event-
B have be checked for syntactic and structural consistency.This is done using the Lyra
UML profile and additional consistency conditions developed during the project. Also,
the results of the formalised Lyra development are used as inputs for automatic test

6

Automatic Model
Translation

Lyra/UML2 models

Event-B models

Refined Event-B
 models

Formal Development
 of models

Demonstrator 1:
Checking syntactic and structural
consistency using Lyra profile
& consistency conditions

Demostrator 2:
Translating Lyra/UML models
into Event-B (using ATL)

Demostrator 4:
Applying model-based testing to
generate test cases

Demonstrator 3:
Collection of specification and
refinement patterns, demonstrating:
-- verified service
 decomposition/distribution
-- incorporation of fault-tolerance
 mechanisms.
-- parallel execution of services

Test Generation

Test Cases

Fig. 2.1: Tool chain for Lyra-B integration and demonstrators

generation using the created model-based testing methodology.

The demonstrators presented in this section illustrate ourresults at different points of
the automated Lyra design flow (Fig.2.1). Their full list is as follows:

1. The Lyra UML profile, intra- and inter-consistency conditions for checking syn-
tactic and structural consistency of Lyra UML models;

2. An example of automatic translation of UML models into B specifications using
the ATL tool;

3. The collection of Event-B models demonstrating

• verification of service decomposition and distribution phases of Lyra,

• incorporation of fault tolerance mechanisms,

• modelling parallel execution of services;

7

4. An example of test generation using the developed model-based testing method-
ology.

Now we will describe these demonstrators separately in moredetail. All the demon-
strators will be accessible from the Rodin section of the sourceforge site.

2.2.1 Checking consistency of Lyra UML models

To automate the Lyra design flow, we need to know the precise form and structure
of Lyra UML models that are used as inputs for our tool chain. For this purpose, a
Lyra UML profile has been derived. The profile defines the Lyra-specific modelling
concepts and dependencies between them, thus outlining therequired stages of the
system development. The profile is considered to be a reference model using which
we could validate created Lyra models.

Also, our work allowed us to establish consistency between the Lyra UML2 models
while undertaking the Lyra development, which otherwise wecould not achieve within
the profile solely. While verifying the Lyra development flow, we simulated Lyra de-
velopment and formalized both the Lyra models and the intra-and inter-consistency
rules in B.

The demonstrator will include the documents of the developed Lyra profile as well as
formulated additional consistency conditions for Lyra UMLmodels. Moreover, we
will demonstrate the B models specifying the process of creating Lyra UL models in a
consistent way. The ProB animator can be used to animate thisverified model creation
process.

2.2.2 Automatic translation of Lyra UML models

The Lyra profile and consistency conditions of Lyra models are used to direct auto-
matic translation Lyra UML models into the corresponding Event-B specifications.
The translation is accomplished by employing an external tool ATL based on Atlas
Transformation Language.

The figureFig.2.2 provides an overview of the ATL transformation (Lyra2Event-B)
that enables to generate an Event-B model, which is in fact anEvent-B machine, con-
forming to the Event-B metamodel, from a Lyra model that conforms to the Lyra meta-
model, which is in fact a Lyra Profile. The designed transformation, which is expressed
by means of the ATL language, conforms to the ATL metamodel.

The figureFig.2.3 shows part of the Lyra profile in graphical format used for Lyra

8

Ecore

ATL

Lyra2Event-B

LyraProfile

LyraModel

Event-B metamodel

Event-B model

conforms To

conforms To conforms To

conforms To

conforms To

conforms To

Transformation

Fig. 2.2: An overview of Lyra to Event-B tranformation using ATL

Fig. 2.3: Part of Lyra Profile used for trannsformation

model transformations. Lyra models, conforming to the Lyraprofile, are transformed
into corresponding Event-B machines, conforming to the Event-B metamodel. These
transformations are directed by using special rules written in the ATL language. The
rules define the exact way Lyra UML elements should be translated into the corre-
sponding elements of Event-B.

The demonstrator will include an example of translation of asimple Lyra UML dia-
gram into the corresponding Event-B specification according to the defined ATL trans-
formation rules. Moreover, it will be demonstrated how the models violating the Lyra
UML profile and / or the consistency rules are identified during the translation process.

9

2.2.3 The B specification and refinement patterns

To verify the Lyra development process, the essential Lyra UML models and trans-
formations have been formalised as the corresponding Event-B specifications and re-
finement steps. At the beginning these models focused on verifying the Lyra decom-
position and distribution phases. Later on, however, the Event-B specifications and
refinements have been enhanced to incorporate fault tolerance mechanisms as well as
modelling parallel execution of services.

The arising complexity of these formal models is handled by introducing abstract data
structures modelling service decomposition, distribution, and fault tolerance aspects of
the system. This makes these B models into specification and refinement patterns that
have to be instantiated with concrete data during the actualdevelopment process.

The demonstrator will include the collection of the aforementioned B models. More-
over, the guidelines for data instantiation of these modelswill be given separately.

2.2.4 Model-based test generation

The B specifications of the formalised Lyra development can also be used as models
from which we can generate test-cases for the correspondingimplementations. This is
often referred to asmodel-based testing.

Our work on model-based testing of Lyra B models is being implemented as a plug-
in for the RODIN open-source platform. The model-based testing (MBT) plug-in is
designed in such a way that it uses the ProB model checker plug-in in the background.
The ProB plug-in is capable of generating execution traces of the models. It is also used
to verify the satisfiability relations between scenarios and their respective models. In
order to generate test-cases through the MBT plug-in, the user is first required to prove
correctness of the model(s) using the RODIN platform. Additionally, the user has to
provide testing scenario(s) for the most abstract specification model. The MBT plug-in
uses the user-provided scenario(s) and the provided B models to generate test cases.
The process can be then repeated for each refinement step.

The demonstrator will include an example of generating testcases for selected Lyra B
models using the execution traces produced by the ProB plug-in.

10

SUT Test cases

S i

S
i+1

S
i+n

T

T

M i

M
i+1

M
i+n

 Test
implementation

 System
implementation

Test application

Fig. 2.4: Overview of the model-based testing approach

2.3 Conclusions

Our evaluation has shown that the work on the case study has progressed according
to the initial plan and achieved the expected objectives. The achieved results allow
integration of formal methods into the existing development process at Nokia through
automation of the refinement steps in the design flow and automatic translation of
Lyra/UML-2 models into the formal framework. Nokia considers the achievement of
such automation as having added significant value to industrial system development.

11

SECTION 3. CASE STUDY 2: ENGINE FAILURE
MANAGEMENT SYSTEM

3.1. Introduction

This section of the D27 report introduces the demonstrators produced in case study 2.
In addition to the Engine Failure Management system case a second case production
acceptance test “PAT” was undertaken in the final year. The PAT case is described in
the D26 [3.1] deliverable as part of case study 2. Demonstrators from both domains
have been provided to illustrate different case achievements.

3.1.1. The FMS Domain and motivations

The definition of the engine failure management system has been described in the D2
deliverable [3.6] and in the initial presentation of the project.

The FMS system is required to provide a dependable system by tolerating
environmental faults with the following failure attributes

-Natural physical deteriation of hardware during operation
-Permanent or transient failures
- non malicious failures, deliberate or accidental
- 75% failures external to controller, 100% external to software

The case study domain aims are to achieve improvement in Failure managements
subsystems maintenance and re-useability. The use of the Rodin technology is
expected to contribute to improvement by;

1. Being able to accurately model the domain in order to reduce the semantic gap
that exists between application requirement and system design. This is a
problem for the domain developer that hinders FMS maintenance.

2. Promote re useability by being able to develop configurable generic model
where other engine variants requiring FMS systems could be catered for.

3.1.2. The PAT Domain and motivations

The definition of the PAT system has been described in the D26 deliverable [3.1] as
part of case study 2.

The PAT system is required to provide a dependable system to detect hardware
failures in production units containing an FMS system.

The PAT system needs to be flexible to changing test requirements and has the case
aim to be more generic.

12

This need for a more generic solution serves several purposes
1. Catered for instantiation of new test instances for other variants of units
2 Ease development of new test behaviour
3 Reduced the Validation time of the test system as fewer system components
requiring verification

The system needs to integrate with existing test facilities so a further case aim is the
consideration of apply formal methods involving a legacy implementation

3.2. Demonstrators of RODIN advances

3.2.1. FMS Demonstrators(University of Southampton)
There are four intended parts to the demonstrator of case study 2 from which a subset
of possible demonstrators will be prepared.

(1) It will show the animation of the complete FMS model with some pointers to
the more interesting parts of the model. Addresses how the domain can be
accurately modelled.

(2) Genericity and re-use of the model will also be shown using suitable
examples. Addresses how reuse can be promoted in the domain.

(3) The development methodology which was described in D26 [3.1] will be
taken up and the viewer will be walked through this cycle step by step using
one stage of the FMS development. Demonstrates a methodical V&V
approach to formal development with UML-B/RODIN

(4) A small demonstration of different pitfalls of the RODIN platform and its
plug-ins will be given. Indicates areas for improvement and further
development

There are four main areas that will be considered for demonstration.

(1) FMS model animation
Firstly, the complete generic model with all its features will be shown. The model
can be animated in Rodin up to refinement 1. The use of lambda expressions in
refinement 2 prevents the animation of the model in Rodin because lambda
expressions are currently not supported by the ProB animator plugin. The
animation of refinement 1 in Rodin will be available as an annotated video.
Further refinements will be made available as classical B machines, which can
then be downloaded and animated using standalone ProB. A short video might be
made available that demonstrates the history recording mechanism and the
integrated system state.

• The UML-B model will be shown in class and context view (several tabs
can be put next to each other) – like this we will demonstrate how different

13

models can be browsed and changed in one view.

• The generated Event-B will be shown for some features.
• We will then switch to the ProB perspective in order to animate the model.
• Further refinements cannot be shown in Rodin, because of the ProB translation

error for the lambda expressions.
• UML-B of Refinement 2 history mechanisms will be shown with a link to the

Event-B generation.
• The animation of history mechanisms will be shown in ProB and the machine

file can be downloaded by the user.
• The final demonstration of the model will be the integration of Aabo’s

statemachine in refinement 3

• This will be done by browsing the model and showing the statemachine and

the generated Event-B.
• A ProB animation will then demonstrate the working model.
• The B machine will be made available for download

(2) Genericity and re-use
Genericity and re-use will be shown by giving a demonstration of switching the
context and an implementation of a different counting algorithm. Again, these will be
shown in a short video and files will be made available as far as possible.
We will generate manually a different instantiation of the context, which can then be
switched with the existing one. Ideally, this should be done using the context

14

manager, but due to the immaturity of this tool, the demonstration will be made
manually. There will be a short animation of the integration methodology used for
integrating Aabo’s ideas. This will mainly be a graphical animation with a quick
demonstration of the model in the end. Again, this will be in the form of a video.

• We will demonstrate how to use the context manager.
• (if time allows) we will show how an existing counting algorithm can easily

be integrated into the existing model – it will then be animated.

(3) V&V-oriented development methodology
The third part of the demonstrator will evolve around the development methodology,
as described in D26. The steps involved are, briefly,

1. Animation (ProB plug-in) - validation
2.1 Model Checking (classical B, ProB) – validation
2.2 Model Checking (disprover, verify POs) - verification
3. Animation (ProB plug-in) –
 verification
4. Interactive Proof – verification

This V&V development cycle will be shown using one development stage of the FMS
model. The viewer will be walked through the development of this refinement stage,
which will then be validated and verified as described earlier, thus demonstrating the
V&V methodology.

(4) Current errors and pitfalls
The last part of the demonstrator will be involved with the demonstration of some
errors and pitfalls of the Rodin platform. This will be done by creating a video with
annotations highlighting the kind of errors that may occur.
Rodin platform pitfalls

• Difficulties in using interactive prover.
• Some error messages are unclear.

UML-B pitfalls
• Refinement in UML-B is not yet mature, the machine to be refined has to be

copied and pasted within the .umlb file. The refines clause has then to be set
manually to indicate which events are refined.

• Generation of duplicate implicit context for refinement, which causes
warnings

ProB pitfalls
• Lambda expression error will be shown. We will show the generated classical

B and demonstrate how the file can be imported into ProB.

• Classical B translation without line breaks

Format of Demonstrators
All demonstrators will be accessible from the Rodin section of the sourceforge site.

Videos
The video demonstrators can simply be downloaded and played back using a media
player. Those videos are a great way to quickly show certain features of the model –

15

they guarantee to bring across what should be shown and the user will have no
problem navigating this video.

Downloadable Models
Some parts of the FMS model will be made available for download. The user can
import them into the Rodin platform and animate them and assure that it is fully
verified. The parts of the FMS model that cannot be animated using the Rodin
platform will be supplied as a machine file, so that it can be animated and model
checked using “standalone ProB”.

3.2.2. PAT Demonstrators

The domain aim “to provide a generic system for the PAT” was addressed by
providing a system which could be easily configured to execute different tests. The
system developed allows the creation of test instances through a dedicated generic
editor, which is encoded into a serialisation of commands. An interpreter executes
these commands in order to perform the acceptance test.
The generic editor was developed using structural modelling and and applying EMF
technology. The generic editor demonstrator is described below;

The aim to use formal methods with a legacy implementation was achieved through
partial modelling behaviour of the interpreter. The interpreter reuses some existing
legacy code in its lower level functionality. The legacy behaviour was modelled
alongside new behaviour in a partial model. The partial model demonstrator is
described below.

The demonstrators and their development are outlined in D26 [3.1].

3.2.2.1 PAT Editor Demonstrator

The PAT editor demonstrator is provided in the Rodin demonstrator area of
sourceforge. It will be in the form of a screenshot example or a flash animation.
Installation instructions and execution instructions are provided.
The demonstration shows how a manual test requirement can be encoded into the
Generic editor. This also illustrates the close mapping of the problem domain to the
design (an aim of the FMS study).
The execution of the created test is then shown which demonstrates the requirement
has been configured correctly.
The modification of a test instance and its execution is illustrated which demonstrates
the generic system domain configurability to meet its generic design aim.

3.2.2.2 PAT Partial Specification Demonstrator

This consists of a simple model stored in the Rodin sourceforge demonstration area.
Installation instructions and execution instructions are provided. The model is
described in section 3.2 of D26 [3.1].

16

3.3. Overview of Demonstrator Achievements
The demonstrators provide an example of how the domain aims described
above have been met. Achievements of the cases have been outlined in D26
[3.1]. Assesment of their contributions to Rodins methods and tools and
evaluation metrics are given in D28 [3.3]and D34 [3.4].

3.3.1. FMS Demonstrators Practical Value
The generic model provides a template which will support various
developments in the domain. The model partially implements the original FMS
specification [D4], thus providing the basis for near-automatic production of the
product line of airframe-specific systems, each defined by airframe-specific
configuration data. This is static genericity, supported by the prototype
Requirements Manager and Context Manager tools, particularly for large
configuration datasets. Further, [3.1] shows how, by feature-oriented
structuring, the model serves as a dynamically generic template for other,
behaviourally distinct product lines in the FMS domain.

The V&V-oriented approach demonstrated provides an exemplar of methodical
working with UML-B/RODIN. The presentation of the demos provide practical
way of learning the technology through video and the use of real models to use.

3.3.2. PAT Demonstrator Practical Value
Editor
The demonstrators practical value is its flexibility to implement a test
configuration for use with an interpreter. The generic editor has been used to
configure the test requirement of a real production test in the domain. The
flexibility provides a test user to easily update or select a new set of tests as
required. The configurability is only constrained by the availability of test items
in the structural model.

Partial Model
The demonstrators practical value is its use for exploration of future model
development of the PAT. It is used to isolate the dependency of new
functionality on existing legacy functionality, which can then be subject to
formal verification.

3.4. References

[3.1] RODIN deliverable D26 : d1.5 Final Report on Case study Developments IST-
5111599, September 2007.

[3.2] RODIN deliverable D27 : d1.6 Case study Demonstrators IST-5111599,
September 2007.

[3.3] RODIN deliverable D28 : d1.7 Report on assessment of tools and methods IST-
5111599, September 2007.

[3.4] RODIN deliverable D34 : D7.4 Assessment report IST-5111599, September
2007.

[3.5] RODIN deliverable D2 : Definitions of Case Studies and Evaluation Criteria
Project IST-5111599, November 2004.

17

Section 4. Case study 3 -- Formal Techniques within an MDA Context

4.1 Introduction
This case study is concerned with the formalisation of various subsets of the MITA
platform [MITA] (developed in Nokia within the NoTA - Network On Terminal
Architecture - project) and, more generally, with the formalisation of the infrastructure
and techniques to allow MDA to be used more formally.

The CS3 team considers the following to be the most acute problems in the domain of the
case study:
o Making UML development more formal
o Making property verification easier and friendlier for the engineers
o Adding rigour into MDA
o Building a rigorous development environment which can be easily extended

4.2. Demonstrators of RODIN advances
Making UML development more formal. Application of the U2B plugin and the step-
wise development method it supports in the development of some parts of the NoTA
system has helped the team to in adding rigorous into this development. This plugin is a
good compromise between the use of UML as the dominant modelling technique in
Nokia and Event B. Report [O1] describes three experiments and the experience gained
in the use of formal methods in a software engineering environment, that does not
completely rely on the top-down stepwise development. These experiments were based
on the Use Case/SDL Based Development, UML Based Development and the UML with
Explicit Architecting.

Making property verification easier and friendlier for the engineers. ProB provides
much necessary support for the default theorem proving and thus verification techniques
already present in the Rodin tool. Use of ProB was extremely useful in validating verified
models - verification removes certain error conditions and ensures that the model to be
validated is "correct". Verification in the style of development used in MITA became a
secondary concern with the focus more on establishing that the specification met the
customer's demands rather than on establishing the adherence to certain properties. This
fits in well with the style of development commonly seen in industry where constructing
a model to investigate the properties of the system is not always feasible - ProB and the
validation style of development in this sense provides a way of first constructing and
demonstrating systems then discovering properties later. The use of ProB was particularly
useful with regards to the initial work made with the B language. In use ProB is stable
and reasonably fast. Scalability is always an issue but in the sizes of models presented to
the tool, no problems regarding this have been seen.

Adding rigour into MDA. Within this case study a method was developed [B1] for
introducing formal transformation of platform independent models (PIM) to platform
specific models (PSM) in a model driven architecture (MDA) context. While fault

18

tolerance is not introduced in the PIM to make the models reusable for different
platforms, the PSM often has to consider platform specific faults. A model transformation
of the PIM in order to preserve refinement properties in the construction of the fault
tolerant PSM is presented using Event B as a formal framework for the reasoning
.
Building a rigorous development environment, which can be easily extended. The
Rodin development environment offers a useful solution to this problem. The CS3 team
experiments with the number of plugins (ProB, U2B) demonstrated the usefulness of the
choice of using the Eclipse technology. The most important example demonstrating this
was the team’s work on developing and integrating a new plugin [O2] for supporting
circuit development with Event B and Bluespec: the plugin integration was
straightforward.

4.3. Overview of achieved results
The CS3 team has found these results to be very useful. They have contributed to the
improvement of the overall development methodology used by making it more rigorous
and easier to apply. Some parts of the MiTA system and applications (e.g. protocols)
have been used in this work to demonstrate the results achieved. By the very nature of
this work the real systems model are confidential and cannot be shown outside of the
consortium but a considerable amount of the open work (including samples of the formal
Event B models) is described in D26, D18 and in the published papers referenced in
D26..

References
[B1] P. Boström, M. Neovius, I. Oliver, M. Waldén. Formal Transformation of Platform
Independent Models into Platform Specific Models. In Proceedings of the 7th
International B Conference (B2007), Besançon, France, LNCS. 4355, pp. 186-200,
January 2007. Springer-Verlag.

 [MITA] Mobile Internet Technical Architecture. IT Press. 2002.

[O1] I. Oliver. Experiments and Experiences with UML and B. NRC-TR-2007-006. May
2007. Nokia Research. Finland.

[O2] I. Oliver. Circuit Development with Event B and Bluespec - RODIN Plugin
Overview. Presented FDL’06 (Forum for specification and design languages). September
19-22, 2006. Darmstadt, Germany

19

Section 5. Case study 4 -- CDIS Air Traffic Control Display System

5.1 . Introduction

This section describes the CDIS case study of the RODIN project. The RODIN tool
support has been used to develop a formal development of CDIS. In order to keep the
case study manageable in the context of the RODIN project, a subset of the original CDIS
has been carefully chosen for redevelopment [1]. However, rather than focusing on
individual aspects of CDIS, a `vertical slice' has been taken so that all of the interesting
features of the system are covered (albeit in a lesser form).

The objective of the experiment (that we shall refer to as `the CDIS subset') is to derive a
methodology for large scale formal development. Redeveloping an existing system also
allows us to reflect on the lessons learned from the original development. Our aim in this
section is to demonstrate how we have attempted to overcome the lack of
comprehensibility and formal proof of the original CDIS development by adopting a
methodology that makes use of available tool support in an effective way.

The initial CDIS specification is necessarily complicated and the core specification has
been criticised for its complexity. This complexity and the bottom-up construction in
VVSL force a level of specification that is too detailed to get an appreciation of the
overall system behaviour. Too much complexity also precludes formal analysis. In order
to reason about a specification formally, it is necessary to keep the level of detail as
simple as possible. Otherwise mathematical proof becomes infeasible.

Another drawback of the original development is the lack of continuity from the
specification to the design. In the idealised view of the core specification, updates are
performed instantaneously at all user positions, whilst there is an inevitable delay in the
actual system because the information must be distributed to the user positions. Hence,
there is no natural refinement of the original specification (in the usual sense of the word)
to the design. We are investigating more novel notions of refinement in order to find a
suitable link between the two viewpoints. In this paper, however, we are specifically
interested in the idealised view of the system.

5.2 . Demonstrators of RODIN Advances

In this section we outline our experiment in applying the Event-B formalism and the
RODIN tool to the CDIS case study. Our approach is focused on finding an appropriate
solution for the challenging aspects that we have pointed out in the previous section. Our
proposed solution should address these issues:

• Lack of any mechanical proof of the consistency of the specification
• Difficulty of comprehending the original specification

20

• Lack of any formal connection between the idealised specification and realistic
distributed design

Our experiment demonstrates that all of these issues can be tackled by using refinement
to layer in the functionality of the system in series of steps rather than trying to model all
the functionality in one large specification. This incremental approach modularises the
proofs into small steps making the proof effort amenable to automated proof. Such an
incremental approach also improves the comprehensibility of the formal specification
which is important for maintenance and evolution of the specification.

In an effort to link the idealise view of the centralised specification to the realistic view of
the design level we have developed two different set of models. In the first stage by
starting from an idealised view of the system we have developed a centralised version of
the system. This includes a specification and a number of refinement levels. These
models have served as platform to investigate different aspects of modelling such as:

• To investigate the appropriate steps to produce a layered formal model of the

CDIS as an example and any large system specification in general.
• To have a realistic view of associated proof obligation which in turn can

assist the formal modelling process in the following ways:
o Fine tuning the model to have simpler proof obligation and achieve

higher level of automatic proof discharging
o To devise appropriate strategies to handle interactive proofs.

• As a basis for comprehending and discussing the system

By obtaining valuable findings and experience from the centralised version we are in a
much better position to develop a distributed version of formal models. These models are
based on a more realistic view of the system.
We believe that the approach we have taken and the lessons learned can be applied to the
construction of large formal specifications more generally.

5.2.1. Description of the Achieved Results - Centralised Version

The purpose of CDIS is to enable the storage, maintenance and display of data at user
positions. If we ignore specific details about what is stored and displayed then CDIS
becomes a `generic' display system.
We begin by constructing a specification for a generic system (which will be, of course,
somewhat influenced by the original VDM specification) and, through subsequent
refinements, introduce more and more airport specific details so that we produce a
specification of the necessary complexity, and reason about it along the way. By
providing a top-down sequence of refinements it is possible to select an appropriate level
of abstraction to view the system: an abstract overview can be obtained from higher level
specifications whilst specific details can be obtained from lower levels.

Abstract Specification (CDIS_Context + ABS_DISPLAY)

21

The abstract specification for a generic system includes two parts. The static part, which
defines the reference sets and constants, such as Pages, Displays and other related
attributes is named CDIS_Context.
The second part, the dynamic part, is defining the variables, their related invariants, and
operation. The variable database represents the stored data, and page_selections records
the page number currently selected at a user position. The variable private_pages holds
the page contents of a page prior to release. This is intended to model an editor's ability to
construct new pages before they are made public. Finally, trq models the `timed release
queue' that enables a new version of a page to be stored until a given time is reached,
whereupon it is made public.

Almost all of the operations given in the ABS_DISPLAY correspond to operations
defined in the original VDM specification. One exception is the VIEW PAGE operation
that uses the disp_values function to output an actual display. This is a departure from the
original VDM specification but, since outputs must be preserved during refinement, it
forces us to ensure that the appearance of actual displays is preserved.

First Refinement – Introducing Page Layout History

This refinement is not introducing significant changes into the specification. In this level
we have just introduced the history for page layout. When an existing page layout has
been updated by the editors, the system keeps the previous page layout as one step history
of changes. In this level no new context has been introduced.

Second Refinement – Adding time

The abstract specification omitted many of the features that characterise CDIS. However,
this made it possible to give a broad overview of the system, including its state variables
and operations, within a few pages. Now we use the specification as a basis for further
refinements in which the omitted details are introduced. As a second refinement, we
introduce a notion of time so that we can add age information to attributes, and add
creation and release times to pages. This will give us the necessary apparatus to model
the intended behaviour of the timed release queue. This refinement and subsequent
refinements will demonstrate how important features of CDIS are added to the
specification incrementally.

In terms of the CDIS subset, there are two main reasons for adding time: each piece of
airport data has an age which affects how it is displayed, and the version of each page
that is displayed is also time-dependent. In this refinement we shall once again use our
proposed syntax for record types [2]. In this stage both the context and the model have
been extended with appropriate constructs to deal with the notion of time.

Third Refinement – Introducing Critical Fields and Acknowledge

Several other aspects of CDIS can affect the way values are displayed. One requirement
is that there is some critical information which they subjected to regular updates. Any

22

new updated values should be highlighted when they are displayed and they should be
acknowledged by the operators. Hence, with each attribute value, we need to record
whether it is a critical field or not. When a critical field has been updated it may effects
many active pages currently viewed by different user positions. In this stage we have
introduced the edd_acks_required and related sets and constants to extent our model with
the critical fields’ requirement. Again here we have extended both the context and the
model.

Fourth Refinement – Introducing Page Overlays

Airport pages comprise a pair of graphic background overlays and a layout descriptor for
transient data fields. One overlay is permanently displayed, the other is selectable using
the reveal/conceal facility. Transient data fields are always displayed – they are
unaffected by the reveal/conceal state. Airport pages need to be validated to ensure that
none of the transient data fields are obscured by the background or overlay.

The reveal/conceal facility applies only to EDDs displaying pages. For all EDDs there is
a means of toggling the reveal/conceal state of the display. This affects only those pages
on display that consist of a permanent background and an overlay. Concealed displays
models the set of EDDs for which the overlay is concealed. The overlays of pages
displayed on all other EDDs are revealed. The act of toggling reveal/conceal at an EDD
adds the EDD to the set if it is not a member beforehand, otherwise removes it. The
specification has been augmented by a fourth refinement in which this features are
introduced.

Fifth Refinement – Highlighting Manual Interaction

Another aspect of CDIS that can affect the way values are displayed is manually updated
values. One requirement is that any manually updated values should be highlighted when
they are displayed. Hence, with each attribute value, we need to record whether it was
updated manually. Once again, we use our notion of record refinement to achieve this.

The Boolean value associated with the new field manually updated indicates whether the
attribute's latest recorded value (accessed via the value field) has been input manually. In
this case, we extend the record type Attrs with a Boolean flag which indicate whether or
not the field has been updated manually. We included this requirement in the fifth
refinement level.

Sixth Refinement – Introducing Concrete Values and Error Handling

The ultimate aim of the refinement process is to construct a specification in which
constants and variables are associated with concrete values and events are defined to
maintain the state accordingly. As part of this process, we have to separate a single
abstract type into several subtypes. In the case of CDIS, this technique is used to
introduce concrete attribute identifiers and value types into the specification. For

23

example, the original VDM specification defines Attr value as a union type made up of
value types such as Wind_direction and Wind_speed. Although union types do not exist
in B, we employ the separation technique to achieve the same goal. We define a new
context in which Wind_direction and Wind_speed are defined as subtypes of Attr_value.

Wind_direction and Wind_speed are just two examples of many different specialised
values for the Attr_value. In the two subsequent refinements we have introduced many
other examples of similar cases. From these refinements, it is necessary to amend the
update event to ensure that only values of the correct type update the database.
Previously, SET_DATA_VALUE updated any attribute identifier with any attribute
value. Now it must be refined in such a way to avoid having a collection of events, each
referring to specific attribute identifiers and attribute values. Again here by the use of
Constant mapping we have introduced a matching function to eliminate this barrier.

5.2.2. Description of the Achieved Results - Distributed Version

As it has been stated earlier, we have attempted to construct a more realistic specification
which unlike initial VVL specification can be liked to the distributed design. Using the
experiences that we have achieved by developing the idealised version, we have
developed a set on new models which includes both horizontal and vertical refinements.
As usual these models include one specification and few refinement levels.

Abstract Specification for Distributed Version of CDIS

This specification is an extension of the idealised version. We have introduced a history
tracking system both for the transient data and the page layouts and selections. In a
realistic system it is possible that different terminals in different user position have a
different view of both transient data and page layout in a specific time. These differences
arise due to delays in the system.

In our distributed specification we have assumed that we can model the actual behaviour
of the system by storing the track of all applied changes over the time. By have the past
history of all changes it is properly possible to model a system which allows that different
terminals to have different view of the system data.
As an effect of introducing the history tracking mechanism our specification became
noticeably more complex in comparison with the idealised version. Despite of this the
development of this specification by extending the centralised version was a
straightforward process.

Refinements of Distributed CDIS

After devising this specification of the CDIS which allow tackling issues that arise in a
distributed system, there are two methods to refine the initial specification. One possible
approach is to apply all subsequent refinement of the idealised version before applying
any vertical refinement. An expected advantage of this approach is the similarities
between the generated proof obligations. This can assist the developers to discharge the

24

interactive proof obligation more easily. After completing all horizontal refinements in
which we introduce new requirements we can proceed to the vertical refinement. During
this stage we have replaced the history tracking mechanism by a system which comprises
a central database, a history of only changed data and a local database for each viewing
position. The main advantage of this approach for implementation viewpoint is that
storing the history of applied changes should need much smaller memory in comparison
of storing the whole database history.

Another approach to the refinement of the distributed specification is that the vertical
refinement precedes horizontal refinements. You have not pursued this path because we
believe that the vertical refinement is a design decision and we should not mix
specification with design decisions.

5.3 . Overview of Achieved Results

A key factor in our success was the construction of good initial abstractions capturing the
essentials of the system concerned. Such a skill is not easily transferable of course, but by
providing good examples, such as the one here, we can help others understand how to
construct good abstractions.

Comparing styles
 A very different methodology and modelling style was adopted in the Event-B
development than in the original VVSL development (VVSL is a variant of VDM). The
original VVSL development produced a single large specification that was difficult to
comprehend and impossible to reason about using the technology available at the time. In
the Event-B development of CDIS we have focused our effort on tackling the
comprehensibility issue and the issue of mechanical proof. We quickly found that both
these issues could be tackled by using refinement to layer in the functionality of the
system in series of steps rather than trying to model all the functionality in one large
specification.

The layered development helped the comprehensibility considerably because we were
able to capture the essential functionality of the system in the abstract specification. The
abstract model is just under 4 pages of Event-B and we claim that this abstract model
allows the reader to quickly grasp the essence of the system. Four subsequent refinements
were used to introduce additional features of the system. The nature of these refinements
was that they added additional details to the information structures and placed further
constraints on when various actions could happen. The layered nature of their
introduction means they can be absorbed in a stepwise fashion thus easing
comprehensibility.

Effort

The main Event-B development represents about 6 months of effort. This includes time
includes time spent learning to use the new tool efficiently as well as time spent checking
the models and performing the proofs using the new interactive prover . It also includes

25

time spent on identifying and dealing with bugs and incompleteness in the tool, half way
through the development and revising the development as a result. It is therefore difficult
to compare directly with the time taken for the original VVSL specification. Our
subjective assessment is that the time taken is comparable, with the advantage that in the
case of the Event-B the development has been machine checked and proved.

Language and style
The mathematical language of Event-B and VVSL are equally expressive. The key
difference was not the notation; rather it was the style of specification used in the Event-
B development, in particular the use of refinement to layer in details of the functionality,
which led to a more comprehensible specification. The layered approach, along with the
new powerful RODIN tool, made it possible to mechanically check and prove the
models. It is worth emphasising that the CDIS specification is necessarily complicated.
Even though the core specification has been criticised for its complexity, it is unrealistic
to expect any significant improvements in the size of a specification that captures all
aspects of CDIS, regardless of the notation used. However, the bottom-up construction in
VVSL forces a level of specification that is too detailed to get an appreciation of the
overall system behaviour.

Mechanical Proof
As well as hampering comprehensibility, too much complexity in specification also
precludes formal analysis. In order to reason about a specification formally, it is
necessary to keep the level of detail as simple as possible. Otherwise mathematical proof
becomes infeasible. Analysing monolithic specifications such as the CDIS core
specification would be beyond the capabilities of contemporary formal methods tools
without intense human intervention. This was not an issue during the original CDIS
development because tool support was largely unavailable, and large-scale formal
analysis was out of the question.

All proofs were carried out using the RODIN tool and we found RODIN to be a powerful
prover. The layered development eased the proof of consistency of the specification since
at each step we had a small number of relatively simple proof obligations. In addition to
the consistency proofs the RODIN tool now is capable of handling wider forms of proof
such as Well-Definedness. All of these increase the confident in to the produced system.

Records and refinement

Beside this, we have provided a number of concrete techniques which are transferable to
the construction of other large formal specifications. In particular we made strong use of
the developmental pattern of extending records to add additional information to
information structures and to extend function signatures in refinement steps. We
identified and made use of a related pattern of wrapping abstract types within record
structures in a refinement step, providing a standard pattern for a gluing invariant. We
also made use of record sub-typing and record extension to differentiate structures in
refinements and to add attributes to abstract deferred sets. These techniques allow us to

26

avoid unnecessary clutter at the more abstract levels. The techniques are easily supported
by existing B provers and our experience is that the associated proof obligations are
mostly automatically discharged.

Linking Between Specification and Design

One weakness of the initial development of the CDIS was that there was no formal link
between the idealised specification and the actual distributed design. We have
successfully overcome this problem by extending the idealised version to amore realistic
specification. We have demonstrated that this specification could be refined to a
distributed model with a reasonable effort in the context of the RODIN tool.

From the above mentioned points we can conclude that the reconstruction of the CDIS
case study represents a methodological contribution to the construction of large formal
specifications. Our experience shows that incremental construction through iterative
refinement makes it feasible to apply tool-based formal analysis to large specifications.
This increases our confidence in the specification greatly and provides the basis for tool-
based formal development of a design and implementation. We also believe that this
approach makes a large formal specification more accessible and comprehensible both to
those constructing the specification and to others. We believe that the approach we have
taken and the lessons learned can be applied to the construction of large formal
specifications more generally.

References

[1] RODIN Deliverable D4: Traceable Requirements Document for Case Studies,
http://rodin.cs.ncl.ac.uk/deliverables/D4.pdf, 2005.

[2] N. Evans and M. Butler: Proposal for Records in B, accepted for publication, FM06.

27

SECTION6. AMBIENT CAMPUS DEMONSTRATORS

6.1 Introduction

Mobile agent systems (MAS) are complex distributed systemsmade of asynchronously communicating
mobile autonomous components. Such systems have a number ofadvantages over traditional distributed
systems, including: ease of deployment, low maintenance cost, scalability, autonomous reconfiguration
and effective use of infrastructure. MAS are distinct enough to require specialised software engineering
techniques. A number of methodologies, frameworks and middleware systems were proposed to support
rapid development of MAS applications [1, 2, 3, 4]. However,there is as yet no single widely recognised
standard and the problem of building large and dependable MAS remains open. In addition to that, a
major stumbling block in this key area of computer system design is the the complexity of verification of
MAS. One way of coping with the complexity problem is to use formal methods supported by computer
aided verification tools. We are using the Event-B version [5] of the B Method [6] to model our system
as a system of communicating agents.

6.2 Demonstrators of RODIN advances

The final demonstrators of the Ambient Campus Case Study are related to the project work on the Student
Induction scenario (See D26). They include

• the requirements document

• B and mobility models of the chosen Ambient scenario

• screenshots of the platform and plugin use

• a demonstration of the use of the developed scenario.

6.3 Requirements document

This section contains requirements to a system implementing the discussed scenario.

6.3.1 Requirements Taxonomy

We split the system requirements into the following five classes:

ENV Facts about the operating environment of the system.
DES Early design decisions captured as requirements.
FUN Requirements to the system functionality.
OPR Requirements to the system behaviour.
SEC Requirements related to the security properties of the system.

6.3.2 Top-Level Requirements
First we attempt a very rough description of the system. The description captures different aspects of the system:
environment, some design decisions, dictated by the motivation for this case study, and few general functionality and
security requirements.

The purpose of the system is to help fresh students arriving at a university campus with the registration process.

28

FUN1
The system helps fresh students to go through the
registration process.

The system is made of a traditional university campus, virtual campus and ambients.

DES1 The system is made of university campus, virtual campus and ambients.

Automated registration complements manual registration process.

OPR1 A student must have a choice between automated and manual registration.

If the system breaks down it should be possible to switch to the manual registration process.

OPR2
Malfunctioning or failure of the automated registration support should
not prevent a student from manual registration.

The system must be reasonably safe to use. There should be no leakage of sensitive information about students
and registration process.

SEC1 The system should not disclose sensitive information aboutstudents.

It should be hard to inject malicious software into the system.

SEC2
The system must prevent malicious or unauthorised softwareto
disguise itself as acting on behalf of a student or an employee.

6.3.3 University
University campus forms the environment for the software-based registration process. The university campus is
obviously not something that can be designed and implemented. However it is important to consider it in the devel-
opment of the scenario as it provides an operating environment for other two parts which can be realised in software
and hardware. Analysis of this environment also leads to many important requirements.

ENV1 In university campus students interact with university employees.

ENV2
Students can freely move around while employees do
not change their position.

ENV3 Each university employee is permanently associated with a unique location.

Figure 6.1: University campus is modelled as a number of university employees (U) and students (S).
Virtual campus has the same structure but is populated with student and university agents.

29

6.3.4 Virtual Campus
Virtual campus uses software-based solution to process student registration automatically. Its organisation is similar
to those of a real campus.

DES2 Virtual campus is made of university agents and student agents.

DES3 In virtual campus, student agents can autonomously change their location.

DES4 Each university agent is permanently associated with a unique location.

Virtual campus is a meeting place for student agents and university agents. During registration, student agent
talks to different university agents.

FUN2
Student agents and university agents can exchange information
related to the registration process.

Some registration steps require intervention from a student.

OPR3
A registration process may fail due to incapacity of a particular
university agent to handle the registration.

a) b)

Figure 6.2: a) Registration process starts from a random location (f9 on the figure). The basic require-
mentsf1, f2, f3are discovered by tracing back the requirements graph. b) Student agent attempts to do
the registration by satisfying each known requirement. It does not yet know the full set of registration
requirements (unknown steps are greyed). They are discovered during this process.

Before some registration step can be attempted, a student agent has to go through other stages. This results in a
tree of dependencies. The root of the tree is successfull registration and its leaves are the registration stages without
any prerequisites. Student agent does not know about the tree structure and explores it dynamically.

OPR4 Each registration stage has number of dependencies.

DES5 Initially, student agent does not know the dependency tree.

DES6 Student agent autonomously construct the dependency tree.

30

Reconstructing the tree for each agent makes the system more
flexible and robust.

a) b)

Figure 6.3: a) During registration a student agent accumulates registration information. b) Itenirary for
manual continuation of a registration is a path covering allthe remaining registration graph nodes and
satisfying a number of constrains. A node of the path is described by a pair conatining when and where
should go to resolve a given registration dependency.

Interacting with university agents, student agent recordsall the information related to the registration process.
This information can be used to restraty registration or passed to the student to do manual registration. In the latter
case, agent student creates and a schedule that helps a student to visit different university office in the right order and
at the right time.

DES7
Student agent keeps a history of registration process that
can be used to restart registration from the point of
last completed registration step.

DES8
Student agent can create an itenirary for a student
to complete the registration manually.

DES9 Itenirary must satisfy the registration dependencies.

6.3.5 Ambient
As implied by the scenario, ambients provide service withina predefined physical location. By service we under-
stand an interaction of an ambient with student’s software.Interaction is triggered when a student enters a location
associated with a given ambient.

OPR5
Ambients interact with student agents to assist with the
registration process.

FUN3 Ambient provides services by interacting with student software.

FUN4
Interaction with an ambient is triggered when a student enters
a location associated with the ambient.

31

Figure 6.4: Composition of motes and ambients system.

When a student leaves an ambient location any interaction with the ambient must be terminated.

FUN5
Interaction with ambient is terminated when a student leaves
location of the ambient.

Positioning Service

For simplicity, we assume that ambient locations are discreet - a student is either within a location or outside of it -
and do not change over time.

FUN6 Ambient locations are discreet and static.

Discovery of an ambient by a student and a student by an ambient does not come for free. It is done using motes
- tiny mobile sensor platforms??. A mote has low-power, short-range radio communication capability.

ENV4 Ambients detect students nearby using the mote radio communication.

Each student carries one such mote which broadcasts studentidentification at certain intervals.

ENV5 Each student carries a mote.

FUN7 Student mote broadcasts student id.

Student motes signals are sensed by ambients. Ambient agentis equipped with a mote radio receiver.

ENV6 Each ambient is equipped with a mote radio receiver.

When an ambient senses a student mote it transmits this information to all other ambients.

FUN8
Position of a student detected by an ambient is made
available to all other ambients.

We will rely on this functionality to implement recovery in emergency situations.

32

6.3.6 Student
Automated registration must be under full control of a student. A student should be able to start, stop and inspect the
current state of a registration.

FUN9 Student starts and stops registration process.

FUN10
Student may inquiry for the current state of a registration
while registration is in progress.

FUN11
When registration is finished or interrupted a student can
access the recorded registration state.

6.3.7 Student Agent
Student agent is a software unit assiting a student in registration.

FUN12
Student agent assists a student in manual registration by
creating a schedule for visiting university employees.

FUN13 Student agent records the state of registration process.

6.3.8 Mobility
The scenario includes several types of mobility. There is physical mobility of computing platforms owned by students
(e.g. mobile phones and PDAs). Students’ agents can migrateto and from a virtual campus world. In this case agent
code and agent states are transferred to a new platform usingcode mobility. Finally, agents migrate within a virtual
campus using virtual mobility.

Different styles of mobility have different requirements.Code mobility is a complex and fail-prone process: it
is dangerous to have an agent separated from its state or having an agent with only partially available state or code.
There is also a danger of an agent disappearing during the migration: the source of migration, believing that migration
was succesful, shuts down and removes the local agent copy, while the destination platform fails to initialise the agent
due to transfer problems.

OPR6
Agent either migrates fully to a new platforms or is informedabout
inability to migrate and continues at a current platform.

Physical mobility presents the problems of spontaneous context change. A student agent may be involved into
collaboration with an ambient when a student decides to walkaway. Clearly, student behaviour cannot be restricted
and such abrupt changes of context and disconnectios must beaccounted for during design of agents and ambients.

OPR7
Interaction between an ambient and student agent
can be interrupted at any moment.

Virtual mobility is the simpliest flavour of mobility as it does not involve any networking or anything actually
moving in space. The only possible failure that can affect virtual migration is failure or shut-down of the hosting
platform. However, such dramatic failure is unlikely to happen during an agent lifetime and thus we do not consider
it at all in this document.

6.3.9 Security
There are a number of security issues with having an agent acting on behalf of a student. Agent with security-
sesnsitive information, like information bank account andcredit card numbers, must be protected from attacks of

33

malicious agents. There is an abundancy of security-related problems in agent systems. For this scenario, however,
we focus on the following problems: authentication, man-in-the-middle attack and brainwashing.

To act on behalf of a student an agent must prove to its peers that it is authorised to do so. Similarly, a university
agent must prove that It indeed acts on behalf of a universityand is not a malicious agent phishing for students’
personal information.

SEC3
Student and university agents do mutual authentication
before any interaction.

Agent interaction must be securely isolated - there should be no possibility for other agents to intercept messages
or insert new messages as this can be used to disguise a malicious as a valid agent acting on behalf of a student and
also may give access to sensitive information, such as payment details.

SEC4
Interaction of student and university agents must be private
and securily isolated.

A student agent in this scenario accumulates various information about the registration progress. A malicious
agent may attempt to rewrite part of an agent state to misleadthe student. This attack can happen not only in virtual
campus but also during migration into or from a virtual campus.

SEC5 Information gathered by a student agent must be protected from tampering.

6.3.10 Fault-Tolerance
The system we are designing is complex distributed system with a multitude of possible failure sources. In additional
to tradinational failures associated with networking we have to account for failures related to environmental changes
which are beyond the control of out systems. Below is the listof faults we are going to address and which we believe
covers all the important failures in our system:

• disconnections and lost messages:

OPR8 Agents must tolerate disconnections and message loss.

• failure of ambients:

OPR9
Student agents must be able to autonomously recover from
a terminal ambient failure.

also, since ambient services are not critical it si better toavoid failing or misbehaving ambient:

FUN14
Student agent drops interaction with an ambient if it suspects
that the ambient is malfunctioning.

• failure of university agents. University agents are critical for completion of registration so it is worth trying to
recover cooperatively:

OPR10 Student and university agents cooperate to recover after failure.

It does not make sense to remain in virtual campus if one of university agents is failing to interact:

FUN15
Student agent leaves virtual campus when it detects
a failed university agent.

• failure of student agents. Failure of a student agent may be dected by a university agent, ambience agent or
student.

34

FUN16
University agent detecting student agent carsh should
attempt to notify the agent owner.

And there is a possibility that a student suddenly terminates without leaving any notice. In this case we rely
on student to detect this situation and possibly try again bysending another agent.

FUN17 Student should be able to restart registration process.

6.4 B and mobility models of the chosen Ambient scenario
To ensure interoperability of of different agent types in our scenario and also to verify properties such as eventual
termination of the registration process, we use the combination of CSP process algebra, AgentB modelling - Event-
B with some syntax sugar, and the Mobility plugin. The AgentBpart of the design is responsible for modelling
functional properties of the system, for the verfication purposes it is translatable into proper Event-B models. With
the mobility plugin we able to construct scenarious describing typical system configurations and verify properties
related to system dynamics and termination. For example, wecan model check the migration algorithm described in
Event-B to verify that the algorithm will never omit a location.

The whole development is lengthy, so we show only some excerpts.

Our system is concerned with registration of a fresh student. At a very abstract level the registration process is
acomplished in one step

S0

REF PREFIX
−−−−−−−→ S1 sat.FUN1

register .

From the description of the system we know that the registration process is made of an automatic or manual parts,
any which properly implements the registration process

S1

REF ICH
−−−−−→ S2 sat.OPR1

auto 7→ register

manual 7→ register
auto. ⊓ manual .

(stepsS3 - S6 omitted)

At thi stage we are ready to speak about roles of agents implementing the system. We introduce two roles: student
(s), representing a human operator using a PDA and agent (a) which for now stands for all kinds of software in our
system.

S6
REF ROLE
−−−−−−→ S7 sat.DES1

s, a ∈ ρS7

(s′send → a′move.; a′communicate .; a′automatic.) ⊓ (
(auto fail → manual anew .)⊓
(auto part → manual cont .))

In the next model we focus on a submodel of the system which represents virtual campus activities, thecommunicate ..
The process is refined into a loop where a student agent visitsdifferent university agents and speaks to them. The
loop alterates between termination (break) and the registration process

35

communicate . from S7

REF LOOP
−−−−−−→ Svc

1 sat.FUN3
done 7→ communicate a′

+`

auto register . ⊓ break
´

; a′done .

(stepsSvc
2 - Svc

6 omitted)

Adding more details about interactions of student and university agents we arrive to the following model. The
model implements a simple request-reply protocol where theuniversity agent role is given a choice of a number of
replies. Eventreply ok ok is used when registration is successfull, eventreply docs indicates that there are missing
documents and that student agent must visit some other virtual offices before registration can be completed. In a case
when registration is not possible without a student itself,thereply pers reply is used.

Svc
6

REF DCPL
−−−−−−→ Svc

7

sa′

+0

B

B

B

B

@

sa′migrate → sa′ask .; (
(ua′reply ok .; sa′save repl .)ua′⊓
(ua′reply docs .; sa′doclist .)ua′⊓
(ua′reply pers .; sa′do pers → sa′break))ua′⊓
(ua′fail .; sa′leave vc → sa′break))

1

C

C

C

C

A

; sa′done.

(stepsSvc
8 andSvc

9 omitted)

This model prepares to the transition to a state-based modelwith completely decoupled agent roles

Svc
9 −→ Svc

10

([ψ1] ⊓ skip)‖
+`

ψ1 → (sa′(migrate → ask .); [ϕ1])
´

‖
+`

ϕ1 → ua′((reply ok ; [ϕ2]) ⊓ (reply docs ; [ϕ3]) ⊓ (reply pers ; [ϕ4])) ⊓ (fail ; [ϕ5]))
´

‖
+`

ϕ2 → sa′save repl .; [ψ1]
´

‖
+`

ϕ3 → sa′doclist .; [ψ1]
´

‖
+`

ϕ4 → sa′do pers .
´

‖
+`

ϕ5 → sa′leave vc.
´

The first version of a state-based model is a mere translationof the CSP expression

Svc
9 −→ Svc

10

ψ1 7→ migrate

ϕ1 7→ reply

ϕ2 7→ save

ϕ3 7→ goaway

ϕ4 7→ do pers

ϕ5 7→ leave vc

do(migrate).

role sa

seq

react migrate()
skip

act ask()
say reply

react save()
say migrate

react goaway()
say migrate

react do pers()
skip

react leave vc()
skip

role ua

react reply()
case true refines reply ok

say save

case true refines reply deps

say goaway

case true refines reply pers

say do pers

case true refines fail

say leave vc

36

(stepsSvc
11 - Svc

13 omitted)

A more detailed model features variables and action bodies specifying the protocol between student and university
agents. At this stage we can make transition to a skeleton code implementing the specification

Svc
13 −→ Svc

14

do(migrate : loc0).

sets OFFICE,DOC
constants

deploc : DOC ֌։ OFFICE
finreg : DOC

properties
S

i
mydoci = DOC

S

i
myloci = OFFICE

∀(i, j) · (i 6= j =⇒ myloci 6= mylocj)
∀i · (mydoci /∈ reqdoc)

role sa

variables loc, docs, trace
invariant

loc ∈ OFFICE
doc ∈ P(OFFICE)
trace : N 7→ OFFICE

initialisation

loc :∈ OFFICE
docs := ⊘
trace := ⊘

seq

react migrate(l)
loc := l

say reset()
act ask()

say reply(docs, loc)
react save(newdoc ∈ DOC)

when trace = ⊘ ∧ l ∈ OFFICE \ loc

docs := docs ∪ {newdoc}
say migrate(l)

when trace 6= ⊘ ∧ l = history(max(dom(trace)))
trace := {(max(dom(trace))}⊳− trace
docs := docs ∪ {newdoc}
say migrate(l)

react goaway(ls ∈ P(OFFICE))
when l ∈ ls
trace(max(dom(trace)) + 1) := loc
say migrate(l)

react do pers()
skip

react leave vc()
skip

role uai

constants

myloci ∈ OFFICE
constants

reqdocsi ∈ P(DOC)
mydoci ∈ DOC

react reset()
skip

react accept(d ∈ P(DOC) ∧ l ∈ OFFICE)
whenmyloci = l ∧ reqdocsi ⊆ d

say save(mydoci)
react notenough(d ∈ P(DOC) ∧ l ∈ OFFICE)

whenmyloci = l ∧ reqdocsi * d
say goaway(deploc[reqdocsi \ d])

react dopers(d ∈ P(DOC) ∧ l ∈ OFFICE)
whenmyloc = l

say do pers

react alldone(d ∈ P(DOC) ∧ l ∈ OFFICE)
whenmyloci = l ∧ reqdocsi ⊆ d ∧mydoci = finreg

say leave vc

Code snippet from implementation of the student agent role in Java language with CAMA middleware using the
reactive communication style. This code was written manually following the specification above.

37

class role_sa extends RoleSkeleton
private VCOffice loc;
private Vector<VCDoc> docs;
private Vector<VCOffice> trace;

public role_sa() {
docs = new Vector<VCDoc>;
race = new Vector<VCOffice>;

}

public void reactionMigrate(VCoffice l) {
loc = l;
post("Reset");
actionAsk();

}

private void actionAsk() {
post("Reply", new Record().add(docs).add(loc));

}

public void reactionSave(VCDoc newdoc) {
if (trace.size() == 0) {

l = random_new_loc();
docs.add(newdoc);

} else if (trace.size() != 0) {
l = trace.last();
trace.remove(l);
post("Migrate", new Record().add(l));

}
}
...

}

6.5 Screenshots of the platform and plugin use
The Mobility plugin is used by CS5 to verify system-wide dynamic properties. Sample screenshots show the Mobility
plugin dialog pane within the platform with a loaded model. The Event-B part of the model is imported from the
case study development while the behavioral and scenario parts are specific to the plugin.

On the first screenshot the tool reports absense of a deadlockin the checked model

38

The second screenshot shows the same model analysed in the built-in animator. The animator interprets low-level
model representaion which already combines Event-B specification behavioral model and scenario. The animator can
also load a counter example (invariant violation or deadlock) that can be played to back to find the stem of a problem.

6.6 Demo
To implement ambients, we are incorporating smart dust motes into the case study scenario. These motes communi-
cate with each other using Zigbee radio, and by customising the transmit power of the radio, we can use these motes
as a localisation sensor. This enables us to deliver location-specific information and services to the users.

Each user carries a smart dust mote (with a unique id, so the mote acts as a badge, sort of speak) and a PDA
as an interaction device. Each room is equipped with a smart dust base-station (receiver), which is connected to a
controller application. The latter uses the CAMA middleware to communicate with the PDAs through Wi-Fi. When
a user enters a particular room, his/her PDA shows the relevant information and/or services available for that room.

39

A set of rooms can be prepared to be smart dust aware. This can include a library, a meeting room, and an office.
When a user enters a library, a list of newly acquired books can be displayed on the PDA, and the user can put his/her
name to the waiting list through the PDA.

The part of the application concerned with automated registration does not have any graphical interface except
the ability to announce results. The following screenshotsfrom the main registration application shows typical stages
of interaction between a user (student), student agent and ambients

6.7 Conclusion
Developing the case study we have applied a range of modelling and software engineering techniques. To design
inter-agent interaction protocols we used CSP scenraious which were transformed into Event-B specifications with
some syntax sugar. At the same time, we applied the mobility plugin to design and verify agent control logic - the
part of an agent which glues one or more role implementations. The animation feature of the Mobility plugin helped
to analyse behaviour prior to producing any executable code. The Pro-B animator integrated with platform was very
usefull to understand role specifications. The CSP-based development of abstract role models helped to design agent
communication protocols quicker than it can be done Event-B. However, we did transfer into Event-B development
to make the full use of state-based modelling.

40

Bibliography

[1] Roman, G.C., Julien, C., Payton, J.: A Formal Treatment of Context-Awareness. In Wermelinger, M., Margaria,
T., eds.: Fundamental Approaches to Software Engineering,7th International Conference, FASE 2004, part of
the Joint European Conferences on Theory and Practice of Software, ETAPS 2004, LNCS 2984. Springer (2004)
12–36

[2] Marzo, G.D., Romanovsky, A.: Designing Fault-TolerantMobile Systems. In Guelfi, N., Astesiano, E., Reggio,
G., eds.: Scientific Engineering for Distributed Java Applications International Workshop, FIDJI 2002, Luxem-
bourg, LNCS 2604. Springer (2003) 185–201

[3] Iliasov, A., Romanovsky, A.: Structured Coordination Spaces for Fault Tolerant Mobile Agents. In Dony, C.,
Knudsen, J.L., Romanovsky, A., Tripathi, A., eds.: LNCS 4119. (2006) 181–199

[4] Iliasov, A., Laibinis, L., Romanovsky, A., Troubitsyna, E.: Towards Formal Development of Mobile Location-
based Systems, Presented at REFT 2005 Workshop on Rigorous Engineering of Fault-Tolerant Systems, New-
castle Upon Tyne, UK (http://rodin.cs.ncl.ac.uk/events.htm) (June 2005)

[5] C. Metayer, J.-R. Abrial, L.V., ed.: Rodin Deliverable D7: Event B language. Project IST-511599, School of
Computing Science, University of Newcastle (2005)

[6] Abrial, J.R.: The B-Book: Assigning Programs to Meanings. Cambridge University Press (2005)

14

41

	D27-1.pdf
	RODIN Deliverable D27
	Case Study Demonstrators

	Editor: Elena Troubitsyna (Aabo Akademi University, Finland)
	Public Document
	Budi Arief (University of Newcastle upon Tyne, UK),
	Michael Butler(University of Southampton, UK),
	Alex Iliasov (University of Newcastle upon Tyne, UK),
	Ian Johnson (ATEC Engine Controls Ltd, UK),
	Maciej Koutny(University of Newcastle upon Tyne, UK)
	Linas Laibinis (Aabo Akademi University, Finland),
	Sari Leppänen (Nokia, Finland),
	Qaisar Malik (Aabo Akademi University, Finland),
	Ian Oliver (Nokia, Finland),
	Mike Poppleton (University of Southampton, UK),
	Abdolbaghi Rezazadeh (University of Southampton, UK),
	Alexander Romanovsky (University of Newcastle upon Tyne, UK)
	Colin Snook (University of Southampton, UK),
	Elena Troubitsyna (Aabo Akademi University, Finland)
	SECTION 1. INTRODUCTION

	D27-3.pdf
	3.1. Introduction
	3.1.1. The FMS Domain and motivations
	3.1.2. The PAT Domain and motivations
	3.2. Demonstrators of RODIN advances
	3.2.1. FMS Demonstrators(University of Southampton)
	3.2.2. PAT Demonstrators
	3.2.2.1 PAT Editor Demonstrator
	3.2.2.2 PAT Partial Specification Demonstrator

	3.3. Overview of Demonstrator Achievements
	3.3.1. FMS Demonstrators Practical Value
	3.3.2. PAT Demonstrator Practical Value
	

	3.4. References

	D27-1.pdf
	RODIN Deliverable D27
	Case Study Demonstrators

	Editor: Elena Troubitsyna (Aabo Akademi University, Finland)
	Public Document
	Budi Arief (University of Newcastle upon Tyne, UK),
	Michael Butler(University of Southampton, UK),
	Alex Iliasov (University of Newcastle upon Tyne, UK),
	Ian Johnson (ATEC Engine Controls Ltd, UK),
	Maciej Koutny(University of Newcastle upon Tyne, UK)
	Linas Laibinis (Aabo Akademi University, Finland),
	Sari Leppänen (Nokia, Finland),
	Qaisar Malik (Aabo Akademi University, Finland),
	Ian Oliver (Nokia, Finland),
	Mike Poppleton (University of Southampton, UK),
	Abdolbaghi Rezazadeh (University of Southampton, UK),
	Alexander Romanovsky (University of Newcastle upon Tyne, UK)
	Colin Snook (University of Southampton, UK),
	Elena Troubitsyna (Aabo Akademi University, Finland)
	SECTION 1. INTRODUCTION

	Contributors.pdf
	Budi Arief (University of Newcastle upon Tyne, UK),
	Michael Butler(University of Southampton, UK),
	Alex Iliasov (University of Newcastle upon Tyne, UK),
	Ian Johnson (ATEC Engine Controls Ltd, UK),
	Maciej Koutny(University of Newcastle upon Tyne, UK)
	Linas Laibinis (Aabo Akademi University, Finland),
	Sari Leppänen (Nokia, Finland),
	Qaisar Malik (Aabo Akademi University, Finland),
	Ian Oliver (Nokia, Finland),
	Mike Poppleton (University of Southampton, UK),
	Alexander Romanovsky (University of Newcastle upon Tyne, UK)
	Kaisa Sere (Aabo Akademi University, Finland),
	Colin Snook (University of Southampton, UK),
	Jenny Sorge(University of Southampton, UK),
	Elena Troubitsyna (Aabo Akademi University, Finland)

