

Project IST-511599

RODIN
“Rigorous Open Development Environment for Complex Systems”

RODIN Deliverable D28

Report on Assessment of Tools and Methods

Editor: Elena Troubitsyna (Aabo Akademi University, Finland)

Public Document

30th October 2007

http://rodin.cs.ncl.ac.uk/

http://rodin.cs.ncl.ac.uk/

Contributors:

Budi Arief (University of Newcastle upon Tyne, UK),
Michael Butler(University of Southampton, UK),
Alex Iliasov (University of Newcastle upon Tyne, UK),
Dubravka Ilic (Aabo Akademi University, Finland),
Ian Johnson (ATEC Engine Controls Ltd, UK),
Maciej Koutny(University of Newcastle upon Tyne, UK)
Linas Laibinis (Aabo Akademi University, Finland),
Sari Leppänen (Nokia, Finland),
Qaisar Malik (Aabo Akademi University, Finland),

 Mats Neovius (Aabo Akademi University, Finland),
Ian Oliver (Nokia, Finland),
Mike Poppleton (University of Southampton, UK),

 Abdolbaghi Rezazadeh (University of Southampton, UK),
Alexander Romanovsky (University of Newcastle upon Tyne, UK),
Kaisa Sere (Aabo Akademi University, Finland),
Colin Snook (University of Southampton, UK),
Jenny Sorge(University of Southampton, UK),
Elena Troubitsyna (Aabo Akademi University, Finland)

CONTENTS

1 Introduction 4
2 Case Study 1 -- Formal Approaches to Protocol Engineering 5
3 Case Study 2 -- Engine Failure Management System 9
4 Case study 3 -- Formal Techniques within an MDA Context 13
5 Case study 4 -- CDIS Air Traffic Control Display System 16
6 Case study 5 -- Ambient Campus 20

SECTION 1. INTRODUCTION

In the deliverable D28 we present assessment of RODIN methods and tools according to
the criteria defined in D2 -- Definition of case studies and evaluation criteria. The generic
case study tool criteria have been defined as follows:
1) How much effect have the new tools had on the case study?
2) How hard is the case study work to do before the tools arrive?
3) How hard it is to learn to use the tools in the case study? (shape of learning curve)
4) What is it like when you stop using the tool, once you're used to it?
5) Contrast the experience gained between case studies, identifying which case studies
have contributed unique measurements and which (if any) only repeat information gained
from other studies?
6) Evaluate expressive convenience of the formal notations used

In each section of this deliverable we present the assessment performed according to
these criteria by the case study leading organizations. Each section also presents
concluding remarks assessing the achievements of the corresponding case study.

4

SECTION 2. CASE STUDY 1:
FORMAL APPROACHES IN PROTOCOL ENGINEERING

2.1 Introduction

In this section we present the assessment of tools and methods used by case study 1.
The section provides a response to the generic case study tool criteria for case studies
given in the deliverable D2 [2.1]. The development of the case study is described in
the final case study development report D26 [2.2]. The main assessment is provided in
the final assessment report D34 [2.3].

2.2 Tools and Methods used by the case study

For most of the project the primary method being used in the case study has been
Classical B. In the last year the results developed in Classical B have been translated
into Event-B. The methodological advances of the case studyare reported in D26 [2.2].

During our work on the case study we have used the Rodin platform, and, to smaller
degree, the UML-B and ProB plug-ins. The latter plug-in has been also used in our
development on the model-based testing plug-in. The individual assessment of these
tools is given in D34 [2.3]. The generic criteria are addressed below.

2.3 Generic case study tool criteria

2.3.1 How much effect have the new tools had on the case study?

The new Rodin platform has helped us to verify formal Lyra development that is the
main result of the case study. Of course, the major part of this development has been
accomplished before the new Rodin platform arrived. However, we have successfully
translated and replicated the previously achieved resultsin the new platform.

We have also used the ProB plug-in in the context of developing the model based
testing (MBT) plug-in. The MBT plug-in uses the ProB engine to generate execution
traces. ProB is easy to configure and use as an independent plug-in for the RODIN plat-
form. However, the plug-in to plug-in interaction is not well defined. There was very
little support available for such a purpose. The lack of documentation and unavailable
application programming interface (API) should be addressed in the future.

5

2.3.2 How hard is the case study work to do before the tools arrive?

As mentioned before, we have used Classical B (and its tool support AtelierB) before
the new tools arrived.

2.3.3 How hard it is to learn to use the tools in the case study?

The Rodin platform If you have some experience with B and Eclipse, it is relatively
easy to get started with the Rodin platform. The interface isnicely structured and easy
to use. A few hours of testing features and generally gettingto know where to find
the things you need is all that is needed to get a decent start.It would maybe be an
good idea to have a manual of the Event-B language easily available, so you know,
e.g., there is no point in trying to make a sequence.

UMLB Once the platform was installed, installing the UMLB pluginwas not diffi-
cult. UMLB appears as a separate perspective in the Eclipse environment. Modeling
in UMLB was, however, not so intuitive at the beginning, despite the solid knowledge
of UML. The main difficulty in modeling in UMLB was caused by quite rigid design
flow supported by the modeling tool.

With a proper guidebook, UMLB can be adopted quite fast and used in developments.
However, we believe that it is necessary to have a prior knowledge of EventB in order
to do successful developments in UMLB.

ProB The ProB plug-in for RODIN platform has proved itself to be very useful for
animating Event-B specifications. The graphical user interface of ProB plug-in is quite
intuitive and user friendly. It is easy to animate and generate execution traces of Event-
B specifications. Although, there are still few bugs in this prototype version and it does
not fully support the Event-B language at the moment.

More about assessment of the Rodin tools can be found in D34 [2.3].

2.3.4 What is it like when you stop using the tool, once you’re used to it?

There was no need to stop using the tool. However, the new Rodin platform has a
number advantages over the AtelierB tool that we have used for formal development
in Classical B. The main one is that, each time when the project is saved, not only
that type checking is performed but proof obligations are generated as well, and, if
possible, automatically discharged. This really saves time comparing with how it is

6

done in AtelierB. Comparing to AtelierB, using Rodin platform we were able to get
more proof obligations discharged automatically for the same development, i.e., based
on the same specifications. However, when it comes to provingthose of remaining
proofs, not everything is that much intuitive. Here, we would really benefit from some
detailed manual on proving, although the initial guidebookalready partially explains
it.

2.3.5 Unique measurements of the case study

Case study 1 has some unique measurements related to the design method Lyra, for-
malisation and automatic support of which is the main goal ofthe case study:

1. How well do the developed concepts, methods, and tools fit with the existing
development framework?

2. How much support does the RODIN approach provide for a morerigorous devel-
opment process? Specifically, how many new tasks in the development process
can be tackled using the methods developed in RODIN?

3. How much support does RODIN provide for automation of the development
process? Specifically, how many new tasks in the developmentprocess can be
tackled using the methods developed in RODIN?

Full assessment based on these metrics is given in D34 [2.3].

2.3.6 Expressive convenience of the formal notations used

Event-B is very easy to learn and use in the Rodin platform. However, it is missing
some data structures (like sequences), which would be very useful in expressing certain
features of our models. Also, the absence of conditionals and sequential composition
forces to split the model operations into smaller ones, which in some cases is somewhat
unnatural and / or inconvenient.

7

2.4 Assessment Conclusion

The case study has mostly successfully applied the new methods and tools. The formal
development modelling the Lyra design flow has been verified by using the new Rodin
platform. The ProB plug-in has been used to implement test generation based on the
developed model-based testing methodology. The full assessment of the case study
and related tools can be found in the final assessment report D34 [2.3].

The tools have been relatively easy to install and use. However, as mentioned before,
the plug-in to plug-in interaction is not well defined. Also,the lack of documentation
and unavailable application programming interface (API) is also a major concern in
some cases.

References

2.1 RODIN Deliverable D2: Definitions of Case Studies and Evaluation Criteria,
Project IST-5111599. November 2004. Available at http://rodin.cs.ncl.ac.uk/.

2.2 RODIN Deliverable D26: Final Report on Case Study Developments, Project IST-
5111599. September 2007. Available at http://rodin.cs.ncl.ac.uk/.

2.3 RODIN Deliverable D34: Final Assessment Report, Project IST-5111599.
September 2007. Available at http://rodin.cs.ncl.ac.uk/.

8

SECTION 3. CASE STUDY 2: TOOLS AND METHODS
ASSESMENT OVERVIEW

3.1. Introduction

This section of the D28 report is to contribute to the assessment of tools and methods
used by case study 2 . It provides a response to the D2 evaluation [3.1]generic case
study tool criteria for case study 2. The case study involved work on two cases the
Engine Failure Management system case and a smaller second case the production
acceptance test “PAT”. The development work on each case is described in the final
development report for the case study section 3 of D26 [3.2]. The main evaluation is
provided in section 5.2 of the evaluation report D34 [3.3].

3.2. Tools and Methods used by the case study

The principal method being used by the case study was UML-B. The study also used
Classic B and Event-B in its initial work. Additional issues in methodological model
development have been explored and are reported on in D26 for the case study.

The following tools and plug-ins were used in each case. Their individual assessment
in the case is given in section 5.3 of D34. The generic criteria are addressed below.

 FMS PAT
Eventb
platform

X X

UML-B X X
PROB X X
B2RODIN X

Table 2: Case study tools used

3.3. Generic case study tool critieria

3.3.1. How much effect have the new tools had on the case study?

The new tools helped create a fully validated and verified FMS model. The
object-oriented approach of the UML-B assisted the construction of a generic
FMS model. Object-orientation is a very natural development approach for
FMS, so UML-B could contribute positively to the development. The addition
of uB annotations (this is an Event_B based action constraint language used in
UML-B) enabled us to produce a fully verified model. The ProB plug-in was

9

used for animation purposes, which could be utilised to ensure the correct
implementation of functionality at any time.

The partial specification of the PAT system was developed, verified and
validated using the RODIN toolset. The ProB animation being particularly
useful for validation. The generic editor of the PAT case used Rodin related
technology. Here a structural model which defined the generic editor was
successfully created in UML but could not be so easily defined in UML-B
which limited the use of the toolset here. (This has been a useful basis for
future UML-B research).

An evaluation of the tools used in the case study was provided in D34 (section
5.2 for the case study). It concludes that the toolset has been useful in
developing and verifying models but in some cases the tools require further
maturity before they can be used commercially by industry.

3.3.2. How hard is the case study work to do before the tools arrive?

FMS development used more traditional methods prior to use of the tools.
The FMS domain was found to be difficult to maintain as the mapping of the
domain to design was not always clear. The domain aims from the technology
and its toolset were to be able to reduce the semantic gap and promote reuse.

The configurability of the PAT system would have been more entrenched in
embedded code and would been difficult to have achieved the same amount of
configurability. The automatic generation of the editor from the structural
model was therefore of great benefit to the domain developer.

3.3.3. How hard is it to learn to use the tools in the case study?

ATEC found the methods difficult to learn as a novice without a background
in formal methods and involved a steep learning curve. However over the
period of the Project understanding of the methods became easier but still felt
that more experience needed to be gained before being comfortable with
applying model development on commercial timescales. (Ideally the PAT
system would have been modeled completely and translated to an
implementation using the methods).

The actual tools themselves were relatively straightforward to apply but
would have benefited from some clearer documentation (at the time of
developing). However ATEC still found interactive proving of models
difficult, although the tool interface was a lot clearer. ATEC found the new
reactive prover was an improvement over B4free for it allowed errors to be
detected when they were introduced and automatic proving was powerfull.

A viewpoint from a student experienced in formal methods is given below.

“The tools used for this FMS case were the UML-B plug-in ,the ProB
animator and the automatic and interactive prover of the Rodin platform.

10

Having modeling experience in UML, the concept was quite clear, so the basic
model could be constructed quite easily. The Event-B annotations could be
made while constructing the UML model. Prior to starting this project, I had
background knowledge of B and other formal methods, so the concept of those
was quite clear. The switch from B to Event-B is straightforward and does not
take much of a learning curve. At first, the Rodin platform seems very
cluttered and seems hard to navigate. However, after having used it for some
time it became a lot easier to find things.

The real learning curve is in the use of the interactive prover, however, for
users with substantial background in B4Free, this curve will be fairly low. The
interactive prover provides a user friendly interface, which provides a lot of
information on the current proof. The problem is however, that the novice
won't be able to use all this information because it can seem overwhelming.

Better and more detailed documentation would help the novice user navigate
the platform more easily and be aware of all its functionality.”

3.3.4. What is it like when you stop using the tool, once you're used to
it?

There has been no need to stop using the tools, other than in cases where
partners required features which were not currently available.

3.3.5. Contrast the experience gained between case studies, identifying
which case studies have contributed unique measurements and which (if
any) only repeat information gained from other studies

Case study 2 has some unique subjective measurements over other studies

As
1) Novice industrial views were taken into consideration.
2) Certification standards were assessed in relation to the method.

These have been reported on in D34 and in this document.

3.3.6. Evaluate expressive convenience of the formal notations used

ATEC found UML-B features such as statemachines, contexts and the dot
notation useful to express the functionality of the partial specification in its
PAT case but found limitations when trying to use the notation as a Domain
Language in developing the generic editor. (ref D26 an D34).

The FMS generic model was naturally expressed using UML-B classes and
associations. However it was found that Event-B does not support all the data
structures of Classic B, in particular sequences, which made modelling more

11

onerous as these structures had to be self-made. UML-B helped to maintain a
specific structure to the model however it consequently restricts modelling
freedom.

3.4. Assessment Conclusion

The case study successfully applied the new methods and tools to both cases.
The FMS generic model benefited from UML-B object orientation to express
the domain concepts. The Aabo model applied the methods but incured some
delays in its model development due to availability of features in UML-B.
ATEC found UML-B provided a better visualization representation of
requirements than its B modeling in year 2.

The toolset has been relatively easy to apply in most cases and benefits have
been gained.(The individual assessment of the actual toolset has been assessed
in the D34 report). However at the time of evaluation it was felt that the tools
were not quite mature enough to be used commercially as some bugs and
features needed to be addressed. (Event_B platform version 0.7.4 , UML-B
version 0.2.11 and ProB version 0.5.1 were used during evaluation). The bugs
and feature requests have been stored in sourceforge and some are outlined in
case study 2 sections of D26 and D34

3.5. References
[3.1] RODIN deliverable D2 : Definitions of Case Studies and Evaluation Criteria

Project IST-5111599, November 2004.

[3.2] RODIN deliverable D26 : d1.5 Final Report on Case study Developments IST-

5111599, September 2007.
[3.3] RODIN deliverable D34 : D7.4 Assessment report IST-5111599, September

2007.

12

SECTION 4. CASE STUDY 3: TOOLS AND METHODS
ASSESMENT OVERVIEW

4.1. Introduction
This case study is concerned with the formalisation of various subsets of the MITA
platform [MITA] and the formalisation of the infrastructure and techniques to allow
MDA to be used more formally. This section complements and summarizes the
results reported in the deliverables D26, D27 and D34 by specifically focusing on the
assessment of the tools and methods developed within the project.

4.2. Tools and Methods used by the case study

The following set of tools have been used and assessed in CS3: the Rodin platform,
the ProB and U2B plugins. An experimental version of the B2Bsw plugin supporting
hardware design has been developed and assessed as well. The B method has been
used in developing some functionalities of MITA and some experiments have been
conducted on introducing it into one of the current development flows of the MITA
systems.

Within this case study a method for introducing formal transformation of platform
independent models (PIM) to platform specific models (PSM) in a model driven
architecture (MDA) context was developed and applied [B1]. It uses a model
transformation of the PIM in order to preserve refinement properties in the
construction of the fault tolerant PSM using Event B as a formal framework for the
reasoning.

4.3. Generic case study tool criteria

- How much effect has the new tools had on the case study?

The use of ProB was extremely successful, in particular, in validating the verified
models: a number of complex error conditions have been removed using this tool.
ProB and the validation style of development which it supports, provides a way of
first constructing and demonstrating systems and then discovering properties later.

It was found that U2B overall provides a good compromise between the mathematical
abstractness of B/Event B to the apparent "concreteness" of UML. It has helped the
CS3 team to make UML modelling more rigorous.

13

- How hard is the case study work to do before the tools arrive?

It was found that ProB and U2B allow the CS3 team to enrich the development
environment with the functionalities which were clearly missing and much needed.

- How hard it is to learn to use the tools in the case study? (shape of learning curve)

Learning of ProB was easy. It fits well into the way Nokia engineers work.

Learning U2B was slower as it makes it more difficult to use UML by requiring
engineers to write actions/operations/invariants in a form more applicable to B/Event
B rather than the object-oriented ideals of UML.

- What is it like when you stop using the tool, once you're used to it?

The CS3 team does not have this experience.

- Contrast the experience gained between case studies, identifying which case studies
have contributed unique measurements and which (if any) only repeat information
gained from other studies

CS3 gained a lot by using ProB. Nokia engineers use UML, so all Rodin efforts
dedicated to making this development more rigorous and to supporting it by the tools
are very important.

B2Bsw: Nokia experience in developing and integrating new plugins into the Rodin
platform has been very positive. The team’s work on hardware design has now moved
outside Rodin, but the experience gained within the project using the B2Bsw plugin
was extremely useful.

- Evaluate expressive convenience of the formal notations used

In the CS3 context the engineers experienced in using UML and OO design had some
difficulties in using the Event B style of development. They clearly needed some
training in the new development method.

4.4. Assessment Conclusion
Nokia consider the three years work on the RODIN Case Study 3 to be a partial
success. They have obtained

• useful practical results in evaluating feasibility of applying formal methods in
the context of MDA

• considerable experience with the use of B in a number of challenging
applications

• extended skills in using the Rodin platform and the ProB and U2B plugins as
the major support for formal modelling

• good experience in developing Rodin Eclipse plugins for the Rodin platform

14

However, the complete methodological support for Event B and fault-tolerance for
the MITA type of applications is still lacking. More work on improving the U2B tool
is necessary.

References:
[B1] P. Boström, M. Neovius, I. Oliver, M. Waldén. Formal Transformation of
Platform Independent Models into Platform Specific Models. In Proceedings of the
7th International B Conference (B2007), Besançon, France, LNCS. 4355, pp. 186-
200, January 2007. Springer-Verlag.

 [MITA] Mobile Internet Technical Architecture. IT Press. 2002.

15

SECTION 5 - CASE STUDY 4:
CDIS AIR TRAFFIC CONTROL DISPLAY SYSTEM

5.1 . Introduction

CDIS is an air traffic display information system. CDIS is real-life system responsible for
displaying information to the air-traffic controllers. The controllers interact with the system to
select the information they want to see. The information displayed includes:

• Arriving and departing flights
• Weather conditions
• Equipment status at the airports
• Information fed into the system manually In addition, the controller who managers the

sequence of incoming flight uses a touch-screen to directly manipulate the sequence
through the CDIS.

A subset of the initial CDIS specification has bee selected as a real case study to be redeveloped
in RODIN. This case study provides RODIN with the opportunity to compare the capabilities of
modern formal methods tools against what was commercially feasible ten years ago. The size of
the specification was the first test of the RODIN tool platform, as it highlights any scalability
issues that the platform might have. Once the specification has been developed in the RODIN
tool, the secondary test was the degree of analysis that is possible for the specification.

The case study is using Event-B extensively. With a substantial subset of the original CDIS
specification redeveloped in Event-B, it provides a good opportunity to asses many different
aspects of the tool. Furthermore a distributed version of the specification with subsequent
refinements has been produced to pave the path for linking the specification to a realistic
distributed design and implementation. Different aspects of the CDIS redevelopment have been
reported in many RODIN deliverables.

5.2 . Tools and Methods used in Developing CDIS

CDIS was an industrial-strength case study with a high degree of complexity. Although as far as
RODIN is concerned only a subset of the initial system has been chosen to be redeveloped, but
still it intended to utilize the main platform and some plug-ins very heavily. The initial plan was
that in addition of the main platform it has to assess ProB and U2B plug-ins. Due to some
technical complexity in the current CDIS models the plug-ins do not provide the required level
of support. Therefore we have not been able to assess these plug-ins. We intend to keep this
possibility open for a near future.

A layered approach has been employed to introduce all the requirements of the chosen subset of
CDIS into the Event-B specification. The layered development has considerably improved the
comprehensibility because we were able to capture the essential functionality of the system in
the abstract specification. The abstract model is just under 4 pages of Event-B and we claim that
this abstract model allows the reader to quickly grasp the essence of the system. Six subsequent
refinements were used to introduce additional features of the system. The main features of these
refinements are that they add additional details to the information structures and introduce
further constraints on the events’ guard. The layered nature of their introduction means they can
be absorbed in a stepwise fashion thus easing comprehensibility.

16

One of the main criticisms of the initial CDIS specification was that there were no formal link
between the core specification and design-level models. Based on experiences obtained during
the redevelopment of the idealised version in Event-B, we have developed a distributed version
of the specification. This specification takes into account distribution and associated delays. It
provides a practical approach to develop a more realistic specification and formally link it to a
distributed refinement.

5.3 . Generic Case Study Tool Criteria

During Year 3 of the project the B development was ported to the RODIN platform to help with
its evaluation. Although some attempts were made during year two to mimic the newly
introduced notation of the RODIN Event-B, it was not possible to take the full advantage of the
new notation until the new tool platform became available. The main reason is that B4free tool
only supports the standard B-method. Thus we had to amend the B models, which were
developed during the second year to adjust them with the new Event-B constructs.

The process of porting from standard B to the new RODIN platform proved to be very
challenging and it has provided the main platform developer with a wide variety of feedback and
a wish list to be considered for future extensions. In the next section we intended to review the
mutual effects of the tool and the case study on each other.

5.3.1. How much effect have the new tools had on the case study?

Both the supported notation of the new Event-B and the recommended methodology in the
RODIN are different from what now is be recognised as standard B. Consequently the produced
B models in Year 3 are different from B4free models which have been produced in Year 2. Some
of these differences are:

• Removing input parameters with surrounding parentheses from the front of event’s name
and replacing them by variables inside ANY clauses.

• Removing PRE clauses and replace them with ANY clauses.
• Removing SELECT clauses and replace them with ANY clauses.
• Removing LET clauses and replace them with ANY clauses.
• Removing any nested combination of ANY clauses or nested combination of ANY with

PRE/LET/SELECT and replace it with a single ANY clause.
• Adding a separate new INITALISATION event
• Some other small changes like changing the Remove Operator from set to “\”
• There is no need to define the operation of the refinement levels which they are skip in

the specification level.

Beside differences in the style of modelling, the new RODIN tool now is capable of generating a
broader range of proof obligations. Inline with this the ability of the tool to automatically
discharge more proof obligation has increased noticeably. The efficiency of the tool generally
and the prover efficiency more specificity also have improved in the recent release of the main
RODIN platform.

5.3.2. How hard is the case study work to do before the tools arrive?

The B4free environment and other related tools were mainly based on batch processing analogy.
Therefore in all the B tools before the RODIN tool, development process was a serial process
and some time very time consuming. The integrated environment of the RODIN platform and its
associated plug-ins has brought a lot of ease to the development process. In addition to that,

17

facilities such as on-fly proof generation and multi-view for exploring different aspects of the
project such as proof tree, interactive prover view and the live linking between proofs and the
source model are among very useful features. All of these new features should facilitate higher
level of productivity.

5.3.3 How hard it is to learn to use the tools in the case study?

The IDE interface of the new RODIN tool has made it very easy and attractable to interact with
the tool. In comparison with the primitive and not very straightforward interface of the B4free
tool, the RODIN interface is very accessible. Almost all of the new tools facilities are complying
with the standards of the modern tools. Therefore the learning process of general aspects of the
RODIN tool should not be different from any other tool.

Other aspects of the tool which related to the use of formal notation and proof for system
modelling are slightly different. Having good understanding of formal modelling, proof system
and knowledge of supported methodology, a comprehensive user manual with some example
case studies and finally have experience in dealing with interactive proofs are very useful. Some
of the above aspects like experience with interactive prover are not very easily transferable and
they need more time and patient. With improved support for discharging proofs automatically
this should not be a major issue in majority of cases.

5.3.4 What is it like when you stop using the tool, once you're used to it?

We have started using the RODIN tool as soon as early versions of the main platform became
available. The CDIS case study was intend to heavily employ the main platform and some other
plug-ins. Also we have not been able to utilise the plug-ins to the initially expected level, but we
have explored many aspect of the main RODIN platform. As the facilities and performance of
the tool has gradually increased by the introduction of the new versions we found it very
attractive and adoptable environment. We believe that the new platform convey a much more
productive environment for formal development in comparison to the previous generation of
tools.

5.3.5 Contrast the experience gained between case studies

The layer and stepwise development and refinement which has been recommended by the
RODIN methodology is the basis which shared by all case studies. Despite this common ground
the CDIS case study has had a specific contribution to the RODIN platform by introducing
record type and the notion of gradual refinement of the record type by the means of constant
mappings.
In addition to this the heavy use of the main platform has provided us with the opportunity to
identify many key issues and provide sizable feedback to the developers of the RODIN tool.
These feedbacks have resulted in the production of a better tool.

5.3.6 Evaluate expressive convenience of the formal notations used

The mathematical language of Event-B and VVSL are equally expressive. The key difference
was not the notation; rather it was the style of specification used in the Event-B development, in
particular the use of refinement to layer in details of the functionality, which led to a more
comprehensible specification. The layered approach, along with the powerful B4free tool, made
it possible to mechanically check and prove the models.

18

5.4 . Assessment and Conclusion

After releasing a number of sub-versions by the main Platform developer, the tool has gradually
reached a reasonable stage of stability, which can now produce and discharge a much wider set
of proof obligations in comparison with the B4free tool. The new facilities resulted in several
amendments and enrichments to the produced B models during third year. As another result of
tool enhancement we were able to develop our B models further and add two further refinement
levels, which now bring the total refinement levels to six in addition to the initial specification
model. Most of these refinements are horizontal refinements, where we have inter-cooperated
new features to the previous levels. A distributed version of the specification and its related
refinements has paved the way to overcome one the major weakness of the initial CDIS
modelling. This was the lack any formal linking between the core specification and subsequent
design documents. This distributed version now has facilitated the formal link between a more
realistic specification and its distributed refinements.

The CDIS case study has provided some methodological contribution to the construction of large
formal specifications. Our experience shows that incremental construction through iterative
refinement makes it feasible to apply tool-based formal analysis to large specifications. This
increases our confidence in the specification greatly and provides the basis for tool-based formal
development of a design and implementation. We also believe that this approach makes a large
formal specification more accessible and comprehensible both to those constructing the
specification and to others. We believe that the approach we have taken and the lessons learned
can be applied to the construction of large formal specifications more generally.

19

Section 6. Case study 5 – Ambient Campus

6.1 Introduction

This case study aims at identifying the extent to which various parts of the RODIN
approach can provide effective support for the most challenging stages of the formal
design process of complex fault-tolerant mobile systems. In particular, the wireless
communication medium, on which the implementation part of this case study is
based, typically causes transmission errors leading to a whole range of critical faults
that must be tolerated. Moreover, such mobile applications require dealing with a
variety of abnormal and unpredictable events due to system openness, mobility of its
participants and their dynamic nature.

 The work on the Ambient Campus case study (from the Description of Work [Error!
Reference source not found.]) has focussed on:

a) elucidation of the specific fault tolerance and modelling techniques appropriate
for the application domain,

b) validation of the methodology developed in WP2 and the model checking plug-
in for verification based on partial-order reductions, and

c) documentation of the experience in the forms of guidelines and fault tolerance
patterns.

More specifically, in this case study we have been investigating how to use formal
methods combined with advanced fault tolerance techniques in developing highly
dependable Ambient Intelligence (AmI) applications.

6.2. Tools and Methods Used by the Case Study

RODIN Platform

The RODIN platform was used extensively by CS 5 in the work on Year 3 scenario.
The modelling of the case study one of the first applications of the platform in the
context of realistic, large-scale specifications. Few problems have been found, mainly
with the tool interface and these were promptly addressed by the platform developers
(bug reports and suggestion were submitted on a regular basis through the
sourcefourge tracking facility).

B2RODIN Plug-In

This plugin has been developed to transfer AtelierB projects into the new RODIN
platform. The plugin is extremely simple in use and no issues have been found. We
have applied the B2RODIN plug-in to transfer previous AtelierB and Click'n'Proof
developments into the new Rodin Platform. The plugin performance was satisfactory
and it is very easy to use.

MobilityChecker

Motivated and inspired in a direct way by CS5, we developed a plug-in for the
RODIN platform based on an automatic verification engine of proven efficiency

20

(developed for high-level Petri nets) that supports the model checking of a given
specification of mobile systems. It has been used extensively in the work of CS5. The
verifier checks for deadlock freeness and invariant violations and it is capable to
provide feedback in case of discovering an error in the specification. These error
traces can be visualised with the help of the included animator, providing further
assistance to the designer.

ProB Plug-In

The integrated version of the ProB tool was to animate various stages of CS5 design
directly from the platform. It is a very robust tool that works very well even with large
and complex models. The interface is also very good. The only minor downside is
that animation of complex models can be somewhat slow. ProB plug-in to the
platform is essential tool for understanding complex models. Large, involved
specifications are hard to read, even more so in Event-B which specifications tend to
have large number of events due to absence of sequential composition. Model
animation is an efficient and user friendly for model interpretation.

Model-Based Testing

Ambient Campus case study (CS5) provided a good test-bench for developing the
theoretical foundations for model based testing approach (MBT). Part of CS5 models,
consisting of formal Event-B [16] specifications of middleware, was used for testing
the MBT methodology. The team working on CS5 was consulted on several occasions
to derive testable information from formal models. One of the important results of this
cooperation was identification of particular testing scenarios and refinement patterns.
These testing scenarios were then refined on different refinement levels. In order to
make automatic refinement of testing scenarios feasible, certain refinement steps and
patterns were identified. As an improvement, the formal models for some of
middleware specifications were rewritten to certain extent. These models were used
as the inputs for the developed model-based testing process and, as a result, the
corresponding test cases were derived. The results described above are published in
[17].

6.3. Generic case study tool criteria

 6.3.3.1How much effect have the new tools had on the case study?

The new tools were absolutely necessary in order to successfully complete the task of
CS5. The RODIN platform was used as a support throughout the development in Year
3, and the available plug-ins (or their prototypes) helped to manage the complexity of
various tasks.

6.3.3.2How hard is the case study work to do before the tools arrive?

Taking as a specific issue the problem of the verification of behavioural properties of
mobile systems, the existing state-of-art model checkers were unable to cope with
even small specifications.

21

6.3.3.3 How hard it is to learn to use the tools in the case study?

There were no identifiable problems with the use of various tools, other than those
resulting from their concurrent development (and so small differences between
different versions had to be carefully noted).

6.3.3.4What is it like when you stop using the tool, once you're used to it?

Again, taking as a specific issue the problem of the verification of behavioural
properties of mobile systems, the mobility plug-in cannot be replaced by a manual
code inspection due to the state explosion problem.

6.3.3.5Contrast the experience gained between case studies, identifying which case
studies have contributed unique measurements and which (if any) only repeat
information gained from other studies

CS5 contributed in a unique way to the development and subsequent evaluation of the
mobility plug-in.

6.3.3.6 Evaluate expressive convenience of the formal notations used

The new programming notation developed in the context of CS5 is easily accessible
to anyone familiar with B-like languages and some basic process algebra concepts.

6.4 Assessment Conclusions

In CS5 we developed and investigated a novel approach for modelling and verifying
the correctness of complex mobile agent systems. There is no doubt that the success
of this case study would not be possible without impact made by the RODIN
platform, as well as various plug-ins developed within the project.

References

[1] B. Arief, J. Coleman, A. Hall, A. Hilton, A. Iliasov, I. Johnson, C. Jones, L.
Laibinis, S. Leppanen, I. Oliver, A. Romanovsky, C. Snook, E. Troubitsyna,
and J. Ziegler, "Rodin Deliverable D4: Traceable Requirements Document for
Case Studies," Project IST-511599, School of Computing Science, Newcastle
University 2005.

[2] "Rodin Deliverable D8: Initial Report on Case Study Development," E.
Troubitsyna, Ed.: Project IST-511599, School of Computing Science,
Newcastle University, 2005, pp. 63-75.

[3] "Rodin Deliverable D18: Intermediate Report on Case Study Development,"
E. Troubitsyna, Ed.: Project IST-511599, School of Computing Science,
Newcastle University, 2006.

[4] A. Iliasov and A. Romanovsky, "Exception Handling in Coordination-based
Mobile Environments," Proceedings of 29th Annual International Computer

22

Software and Applications Conference (COMPSAC 2005), IEEE Computer
Society Press, 2005, pp. 341-350.

[5] A. Iliasov, L. Laibinis, A. Romanovsky, and E. Troubitsyna, "Towards Formal
Development of Mobile Location-based Systems," Proceedings of Workshop
on Rigorous Engineering of Fault-Tolerant Systems (REFT 2005),
(http://rodin.cs.ncl.ac.uk/events.htm), Newcastle Upon Tyne, UK 2005, pp.
53-64.

[6] A. Iliasov and A. Romanovsky, "Structured Coordination Spaces for Fault
Tolerant Mobile Agents," in LNCS 4119, C. Dony, J. L. Knudsen, A.
Romanovsky, and A. Tripathi, Eds., 2006, pp. 181-199.

[7] A. Iliasov, V. Khomenko, M. Koutny, and A. Romanovsky, "On Specification
and Verification of Location-based Fault Tolerant Mobile Systems,"
Proceedings of Workshop on Rigorous Engineering of Fault-Tolerant Systems
(REFT 2005), (http://rodin.cs.ncl.ac.uk/events.htm), Newcastle Upon Tyne,
UK 2005, pp. 129-140.

[8] B. Arief, A. Iliasov, and A. Romanovsky, "On Using the CAMA Framework
for Developing Open Mobile Fault Tolerant Agent Systems," Proceedings of
SELMAS 2006 workshop at ICSE 2006, Shanghai, China 2006, pp. 29-36.

[9] A. Iliasov, A. Romanovsky, B. Arief, L. Laibinis, and E. Troubitsyna, "A
Framework for Open Distributed System Design," Proceedings of Computer
Software & Applications Conference (COMPSAC 07), Volume II - Workshop
Papers, 1st IEEE International Workshop on Software Patterns (SPAC 2007),
Beijing, China, IEEE Computer Society, Conference Publishing Services, 27
July 2007, pp. 658-668.

[10] B. Arief, A. Iliasov, and A. Romanovsky, "On Developing Open Mobile Fault
Tolerant Agent Systems," in Software Engineering for Multi-Agent Systems V,
LNCS 4408, R. Choren, A. Garcia, H. Giese, H.-f. Leung, C. Lucena, and A.
Romanovsky, Eds.: Springer, 2007, pp. 21-40.

[11] B. Arief, A. Iliasov, and A. Romanovsky, "Rigorous Development of Ambient
Campus Applications that can Recover from Errors," Proceedings of
Workshop on Methods, Models and Tools for Fault-Tolerance (MeMoT
2007), at the International Conference on Integrated Formal Methods 2007
(IFM 2007), Oxford, UK, 3 July 2007, pp. 103-110.

[12] A. Iliasov, A. Romanovsky, B. Arief, L. Laibinis, and E. Troubitsyna, "On
Rigorous Design and Implementation of Fault Tolerant Ambient Systems,"
Proceedings of 10th IEEE International Symposium on Object and
Component-Oriented Real-Time Distributed Computing (ISORC07), Santorini
Island, Greece, 7-9 May 2007, pp. 141-145.

[13] A. Iliasov, "Refinement patterns for rapid development of dependable
systems," Proceedings of Engineering Fault Tolerant Systems Workshop (at
ESEC/FSE), Croatia, ACM, 4 September 2007

23

http://rodin.cs.ncl.ac.uk/events.htm)
http://rodin.cs.ncl.ac.uk/events.htm)

[14] "Finer Plugin Introduction," online at http://www.iliasov.org/FinerPlugin.html
(last accessed 15 August 2007).

[15] "Smartdust," online at http://en.wikipedia.org/wiki/Smartdust (last accessed 14
August 2007).

[16] C. Metayer, J. R. Abrial, and L. Voisin, "Rodin deliverable 3.2. Event-B
language," Project IST-511599, School of Computing Science, Newcastle
University, available from http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf 2005.

[17] Q. A. Malik, J. Lilius, and L. Laibinis, "Model-Based Testing using Scenarios
and Event-B Refinements," Proceedings of Workshop on Methods, Models
and Tools for Fault-Tolerance (MeMoT 2007), at the International Conference
on Integrated Formal Methods 2007 (IFM 2007), Oxford, UK, 3 July 2007,
pp. 59-69.

[18] "ISTAG Scenarios for Ambient Intelligence in 2010," online at
ftp://ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf (last accessed 15
August 2007).

24

http://www.iliasov.org/FinerPlugin.html
http://en.wikipedia.org/wiki/Smartdust
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
ftp://ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf

	D28-1.pdf
	RODIN Deliverable D28
	Report on Assessment of Tools and Methods

	Editor: Elena Troubitsyna (Aabo Akademi University, Finland)
	Public Document
	Budi Arief (University of Newcastle upon Tyne, UK),
	Michael Butler(University of Southampton, UK),
	Alex Iliasov (University of Newcastle upon Tyne, UK),
	Ian Johnson (ATEC Engine Controls Ltd, UK),
	Maciej Koutny(University of Newcastle upon Tyne, UK)
	Linas Laibinis (Aabo Akademi University, Finland),
	Sari Leppänen (Nokia, Finland),
	Qaisar Malik (Aabo Akademi University, Finland),
	Ian Oliver (Nokia, Finland),
	Mike Poppleton (University of Southampton, UK),
	Abdolbaghi Rezazadeh (University of Southampton, UK),
	Alexander Romanovsky (University of Newcastle upon Tyne, UK)
	Colin Snook (University of Southampton, UK),
	Elena Troubitsyna (Aabo Akademi University, Finland)
	SECTION 1. INTRODUCTION

	ATEC_D28_cs2_1.pdf
	3.1. Introduction
	3.2. Tools and Methods used by the case study
	3.3. Generic case study tool critieria
	3.3.1. How much effect have the new tools had on the case study?
	3.3.2. How hard is the case study work to do before the tools arrive?
	3.3.3. How hard is it to learn to use the tools in the case study?
	3.3.4. What is it like when you stop using the tool, once you're used to it?
	3.3.5. Contrast the experience gained between case studies, identifying which case studies have contributed unique measurements and which (if any) only repeat information gained from other studies
	3.3.6. Evaluate expressive convenience of the formal notations used
	3.4. Assessment Conclusion
	3.5. References

	D28-CS3.pdf
	4.1. Introduction
	4.2. Tools and Methods used by the case study
	4.3. Generic case study tool criteria
	4.4. Assessment Conclusion

	Contributors.pdf
	Budi Arief (University of Newcastle upon Tyne, UK),
	Michael Butler(University of Southampton, UK),
	Alex Iliasov (University of Newcastle upon Tyne, UK),
	Ian Johnson (ATEC Engine Controls Ltd, UK),
	Maciej Koutny(University of Newcastle upon Tyne, UK)
	Linas Laibinis (Aabo Akademi University, Finland),
	Sari Leppänen (Nokia, Finland),
	Qaisar Malik (Aabo Akademi University, Finland),
	Ian Oliver (Nokia, Finland),
	Mike Poppleton (University of Southampton, UK),
	Alexander Romanovsky (University of Newcastle upon Tyne, UK)
	Kaisa Sere (Aabo Akademi University, Finland),
	Colin Snook (University of Southampton, UK),
	Jenny Sorge(University of Southampton, UK),
	Elena Troubitsyna (Aabo Akademi University, Finland)

