
Dependable Composite Web Services with Components
Upgraded Online

Anatoliy Gorbenko1, Vyacheslav Kharchenko1, Peter Popov2,
Alexander Romanovsky3

1 Department of Computer Systems and Networks, National Aerospace University,
Kharkiv, Ukraine

A.Gorbenko@csac.khai.edu, V.Kharchenko@khai.edu
2 Centre for Software Reliability, City University, London, UK

ptp@csr.city.ac.uk
3 School of Computing Science, University of Newcastle, Newcastle upon Tyne, UK

alexander.romanovsky@ncl.ac.uk

Abstract. Achieving high dependability of Web Services (WSs) dynamically
composed from component WSs is an open problem. One of the main
difficulties here is due to the fact that the component WSs can and will be
upgraded online, which will affect the dependability of the composite WS. The
paper introduces the problem of component WS upgrade and proposes
solutions for dependable upgrading in which natural redundancy, formed by the
latest and the previous releases of a WS being kept operational, is used. The
paper describes how ‘confidence in correctness’ can be systematically used as a
measure of dependability of both the component and the composite WSs. We
discuss architectures for a composite WS in which the upgrade of the
component WS is managed by switching the composite WS from using the old
release of the component WS to using its newer release only when the
confidence is high enough, so that the composite service dependability will not
deteriorate as a result of the switch. The effectiveness of the proposed solutions
is assessed by simulation. We discuss the implications of the proposed
architectures, including ways of ‘publishing’ the confidence in WSs, in the
context of relevant standard technologies, such as WSDL, UDDI and SOAP.

1 Introduction

The Web Service architecture [1] is rapidly becoming the de facto standard
technology for achieving interoperability between different software applications
running on a variety of platforms. This architecture supports development and
deployment of open systems in which component discovery and system integration
can be postponed until the systems are executed. Individual components (i.e. Web
Services – WSs) advertise their services via a registry (typically developed using the
UDDI standard1) in which their descriptions, given in a standard XML-based

1 http://www.uddi.org/

language called Web Service Definition Language (WSDL2), can be looked up. After
a WS capable of delivering the required service has been found it can be used or even
dynamically integrated into a composite WS.

The WS architecture is in effect a further step in the evolution of the well-known
component-based system development with off-the-shelf (OTS) components. The
main advances enabling this architecture have been made by the standardisation of
the integration process (a set of interrelated standards such as SOAP3, WSDL, UDDI4,
etc.). WSs are the OTS components for which a standard way of advertising their
functionality has been widely adopted.

The problem of dealing with online system upgrades is well known and a number
of solutions have been proposed (see, for example [2]). The main reasons for
upgrading the systems are improving/adding functionality or correction of bugs. The
difficulties in dealing with upgrades of COTS components in a dependable way are
well recognised and a number of solutions have been proposed. The WS architecture
poses a new set of problems mainly caused by its openness and by the fact that the
component WSs are executed in different management domains and are outside of the
control of the composite WS. Moreover, switching such systems off or inflicting any
serious interruptions in the service they provide is not acceptable, so all upgrades
have to be dealt with seamlessly and online. One of the motivations for our work is
that ensuring and assessing dependability of complex WSs is complicated when any
component can be replaced online by a new one with unknown dependability
characteristics.

There is clearly a need to develop solutions making use of natural redundancy
which exists in such systems and guaranteeing that the overall dependability of the
composite system is improving rather than deteriorating. Note that the idea of using
the old and the new releases of a program side by side to improve its dependability is
far from new: it was first mentioned by B. Randell in his work on recovery blocks in
which the earlier releases of the primary alternate are seen as a source of secondary
alternates [3].

The rest of the paper is organised as follows. Section 2 gives an overview of the
Web Service dependability and shows how it can be assessed using measures such as
“confidence in WS correctness”. In section 3 we introduce the problem of a
component WS upgrade. Section 4 discusses how keeping several releases of a
component WS available can affect the composite WS. In section 5 we provide a brief
description of the Bayesian inference and show how it can be applied in the context of
WS for assessing the confidence in their correctness. Some simulation results are also
presented to illustrate the effectiveness of the proposed architectural solutions. Finally,
in section 6 we briefly outline the on-going work on building a test harness for
managed WS upgrade together with several ways of ‘publishing’ the confidence in a
WS, compatible with relevant standards, such as WSDL, UDDI and SOAP.

2 http://www.w3.org/TR/wsdl
3 http://www.w3.org/TR/soap12-part0/
4 http://www.oasis-open.org/committees/uddi-spec/

2 Web Services Dependability

The WS architecture is now extensively used in developing various critical
applications with high dependability requirements, such as banking, auctions, Internet
shopping, hotel/car/flight/train reservation and booking, e-business, e-science,
business account management, which in turn demands adequate mechanisms for
dependability assurance and dependability assessment in the new context of WSs (see
[4], [5]). In [1] the idea of ‘Service Management’ is advocated as a way of providing
the users of a WS with information about its dependability. Such a service is achieved
via a set of capabilities, such as monitoring, controlling, and reporting on the use of
the deployed WS.

Dependability of a computing system is the ability to deliver service that can be
justifiably trusted [6]. Dependability of the Web Services is a system property that
integrates several attributes, the most important of which are availability (including
responsiveness), reliability (correctness), and security. For many applications it would
be desirable if the service requester (consumer) could quantify these attributes by
either assessing them independently or relying for the assessment on a third party, e.g.
a trusted independent dependability broker or even the WS provider.

We recognise that security is a very important dependability attribute, especially in
the context of WSs. However, since the techniques for security assessment are still at
an embryonic stage, security is not addressed in this paper. Whether the ideas
presented here, e.g. confidence in security, are applicable, is to be seen when security
assessment techniques mature.

2.1 Web Services Failures

A system failure is an event that occurs when the delivered service deviates from
system specification.

A number of approaches has been used to analyse failures, their modes, effects and
causes in the context of Web Services [7], system software [8] and a computer system
as a whole [6], [9]. In this paper we focus on the following failure modes.

Transient failure – a failure triggered by transient conditions which can be
tolerated by using generic recovery techniques such as rollback and retry even if the
same code is used.

Non-transient failure – a deterministic failure. To tolerate such failure the diverse
redundancy should be used. Such redundancy naturally exists during WS upgrading
when the old (one or more) and new releases of the same WS are available.

Evident failure – a failure that needs no special means to be detected. It may be,
for example, an exception, denial of service or absence of response during a
predefined period of time, which will be detected by a general-purpose mechanism
such as timeout.

Non-evident failure – a failure that can be detected only by using the existing
redundancy at the application level (e.g. in the form of diversity). It is clear, that the
non-evident failures can have more dramatic consequence than the evident failures.

This understanding of possible failure modes will be taken into account while
building dependable Web Services and will affect the choice of the error detection

mechanisms and fault-tolerance techniques employing several WS releases available
online.

2.2 Confidence in the Web Services

WSs, as any other complex software may contain faults which may manifest
themselves in operation. In many cases the consumers of the WSs may benefit from
knowing how confident they can be in the availability, responsiveness and correctness
of the information processing provided by the WSs. This issue may seem new in the
context of WSs but is not new for some well-established domains with high
dependability needs such as safety critical applications for which it is not unusual to
state dependability requirements in probabilistic terms, e.g. as probability of failure of
software on demand [10].

This fits nicely in the context of WSs, which can be seen as successive invocations
of the operations published by a WS. It may be very difficult (or impossible) to
guarantee that software behind a WS interface is flawless, but the confidence of the
consumers will, no doubt, be affected by knowing for how long the service has been
in operation and by how many failures have been observed. Informally, we will be
much more confident in the results we get from a piece of software after we have seen
it in operation for a long period of time without a failure than if we have not seen it in
operation at all. How long software has been used is no guarantee that we will have
high confidence in its dependability. Clearly, if we have seen it fail many times in the
past we will take with doubt the next result that we get from this piece of software.

Building confidence measures to assess the correctness, the availability and the
responsiveness can be formalised. Bayesian inference [11] is a mathematically sound
way of expressing the confidence combining the knowledge about how good or poor
the service is prior to deployment with the empirical evidence which becomes
available after deployment. A priori knowledge can be gained by the WS provider
using standard techniques for reliability assessment, e.g. the quality of the
development process or other techniques such as those described in [12].

The confidence in the dependability of the composite Web Service will be affected
by the confidence in the dependability of the component WSs it depends upon and by
the confidence in the dependability of the composition (the design of the composition
and its implementation, i.e. the ‘glue’ code held in the composite WS itself). The
confidence naturally links two important aspects – the value of the dependability
attribute, e.g. probability of failure on demand, with the risk that the particular WS
delivers this attribute (e.g. its probability of failure is better than the specific value).
For instance, we may want to compare two WSs, A and B, for which the confidence
is expressed as follows:
− For WS A we have confidence 99% that its probability of failure on demand (pfd)

is lower than 10-3, 70% that the pfd is less than 10-4, etc.
− For WS B we have confidence 95% that its probability of failure on demand (pfd)

is lower than 10-3, 90% that the pfd is less than 10-4, etc.
Now which of the two WSs will be chosen depends on the dependability
requirements, i.e. the particular dependability context: A will be used if the targeted
pfd is 10-3, because the confidence that this target is satisfied with WS A is higher

(99% vs. 95% with WS B). However, if a more stringent target is set, e.g. 10-4, then
WS B should be preferred to WS A, because the confidence that it meets the target is
higher (90% vs. 70% with WS A). In the context of this – on-line upgrade
management of a component WS – confidence is particularly relevant. The key idea
behind an upgrade managed on-line is that the composite WS does not switch to the
newest release of the component WS as soon as this new release becomes available
since its dependability may suffer as a result. The new release may provide better
functionality but it also brings in the increased risk that new faults may have arisen in
the new release, which did not exist in the old release. A prudent policy of switching
would be for the composite WS to wait until it gains sufficiently high confidence that
the new release will not lead to deterioration of dependability.

In section 5 we show how the Bayesian inference can be applied in the context of
WSs for calculating the confidence of a component WS.

3 The Web Service Upgrade Problem

A well-known problem for any component-based software development with OTS
components is the upgrade of the OTS components. When a new release of an OTS
component is made available the system integrator has two options:
1. Change their ‘integrated’ solution5 so that it can use the new release of the OTS

component. This may cause problems for the integrated solution and significant
effort to rectify.

2. Stick to the old version of the OTS component and take the risk to face the
consequences if the vendor of the OTS component ceases to support the old
releases of the OTS component.

Web-Service
1

URL: Node 1

Web-Service
2

URL: Node 2

WS1

WS2

Composite
Web-Service

URL: My Node

Composite
WS

All Web Services are published with their respective interfaces
according WSDL.

The Composite Web Service uses Web Service 1 and
Web Service 2

Fig. 1. A UML Deployment diagram of a composite WS, Composite Web-Service, which
depends on two other component WSs provided by third parties, Web-Service 1 and Web-
Service 2, respectively

The situation with a composite WS is very similar. Indeed, WS 1 and WS 2 in Fig. 1
are two component WSs used by a composite WS; conceptually this is equivalent to

5 A term used by ECUA: http://www.esi.es/en/Projects/ecua/ecua.htm

integrating any other OTS software component in an integrated solution. There may,
however, be a difference from the maintenance point of view between a composite
WS and an integrated solution in which OTS components are used. In the latter case,
as indicated above, the integrator has a choice whether to update the integrated
solution with every new release of the OTS components or not. Such a choice may
not exist in the former case of composite WSs. The deployment of a composite WS
assumes that the component WSs (Web-Service 1 and Web-Service 2 in our example
in Fig. 1) used by the composite WS have been deployed by their respective
providers. If the providers decide to bring down their WSs the composite WS may
become unavailable, too. What seems more interesting is that when the provider of a
component WS, on which the composite WS depends upon, decides to update their
WS the provider of the composite WS may not be even notified about the update. The
composite service may be affected without its provider being able to do anything to
prevent this from happening. Thus, the provider of the composite WS is automatically
locked-in by the very decision to depend on another WS.

Are there ways out of the lock-in? If not, can the provider of the composite WS do
something at least to make the consumers of the composite WS aware of the potential
problems as a result of the update(s) which are beyond their control? Below we
discuss two plausible alternatives.

3.1 Third-party Component WS Upgrade with Several Operational Releases

This scenario is depicted in Fig. 2. The choice of whether to switch to a new release
of a WS used by the composite WS is with the provider of the composite WS. They
may use whatever methods are available to them to assess the dependability of the
new release before deciding whether or not to move to the upgraded version(s) of the
used component WS.

The designer of the composite service may even make provisions at design stage
of the composite WS which facilitate the assessment of the new releases of the
services the composite service depends upon when these become available. An
example of such a design would be making it possible to run ‘back-to-back’ the old
and the new releases of the component WS used in the composite WS.

During the transitional period (i.e. after the new release, WS 1.1 in Fig. 2, becomes
available) the old version of the component WS will continue to be the version used
by the composite WS, but by comparing the responses coming from the old and the
new release, WS 1.0 and WS 1.1 respectively, the provider of the composite WS will
gain empirical evidence about how good the new release, WS 1.1, is. Once the
composite service gains sufficient confidence in WS 1.1 it may switch to using it and
cease using WS 1.0.

Essentially, the composite service will have to run its own ‘testing campaign’
against the new release of the WS and may use the old release as an ‘oracle’ in
judging if WS 1.1 returns correct responses.

Web-Service
1.0

URL: Node 1

Web-Service
2

URL: Node 2

WS
1.0

WS2

Composite
Web-Service

URL: My Node

Composite
WS

Web-Service
1.1

WS
1.1

Fig. 2. A new release, Web-Service1.1, of a component WS is released, but the old version,
Web-Service1.0, is also kept operational. The new release has no effect on the composite
service, Composite Web-Service, as long as it continues to use the old release, Web-Service1.0,
of the component WS. Eventually, the composite service is ‘upgraded’ to use the newer
version, Web-Service 1.1

3.2 Third-party Component WS Upgrade with a Single Operational Release

Under this scenario Fig. 1 remains applicable: the most recent release of Web Service
1 will be deployed behind the interface WS 1. The options left to the provider of the
composite WS are very limited. If the new release is at least distinguishable from the
previous release, e.g. the release carries the release number, the provider of the
composite WS will be able to detect the upgrade of the component WS and try to
‘adjust’ the confidence in the quality of the composite WS which may be caused by
the upgrade and publish it to its consumers. A conservative view when calculating the
impact of the upgrade on the dependability of the composite WS would be treating
the upgraded component WS as if it were no better than the old release, i.e. the
confidence in its dependability is no higher than the confidence in the old release as
suggested in [12].

3.3 Own Component WS Upgrade with Several Operational Releases

In some cases a composite WS may use the component WS maintained by the same
vendor. In this case the upgraded component WS will be deployed in a way which
reflects the vendor’s view on whether the upgraded component WS may have
detrimental impact on the dependability of the own composite WSs which depends on
the upgraded component WS.

We expect that even in this case, when the vendor has access to the internal details
of the upgraded component WS, that prudence may dictate deployment of the new
release of the component WS side by side with the old release in a special
environment which has features for transparent upgrade including: interactive
features for monitoring the dependability of old and new versions (including typical

adjudicator functionality for comparing their results), support for several modes of
operations (using the old release only, running the old and the new releases in parallel
and adjudication of their responses, switching to the new release only and phasing out
the old release from the composite WS) and a standard interface (i.e. using the WSDL
description of the component WS). The component WS provider should be able to
monitor the way the new release of the WS is operating and choose the best way of
ensuring the dependability of the service. The main difference between this form of
the upgrade and the upgrade of the third-party component WS is that here the extra
information that might be available about the component WS may affect the way the
dependability is measured. For instance, an extensive validation and verification (e.g.
regression testing and testing the bugs of the previous release on the new release or
the introduction of sophisticated mechanisms of fault-tolerance in the new release of
the component WS) prior to deployment may justify placing high confidence in the
dependability of the new release than has been achieved in the old release. This, in
theory, may justify the immediate switch of the composite WSs developed by the
same vendor to using the latest release of the component WS or at least configuring
the environment responsible to manage the upgrade in a way, which will require a
very limited amount of operational evidence before the composite WS switches s to
using the upgraded component WS.

4 Solutions for Dependable WS Upgrading

In this section we describe several architectures which allow for a managed upgrade
of a WS. The architecture can be deployed as part of a composite WS in which the
WS in question is used as component WS or deployed by a dependability-conscious
consumer of the WS aware of the inevitable upgrade of the WS. The architecture can
also be deployed by the vendor of the WS if they want to provide high dependability
guarantees to the consumers of the WS. In either case the impact of the upgrade on
the consumers of the WS will be minimised.

4.1 General Architecture

The general architecture for a managed WS upgrade consists of:
− a specialised middleware which runs several releases of the WS. The middleware

intercepts the consumer requests coming through the WS interface, relays them to
all the releases and collects the responses from the releases. It is also responsible
for ‘publishing’ the confidence associated with the WS (or its releases);

− a subsystem which monitors the behaviour of the releases and assess their
dependability including confidence;

− a management subsystem which adjudicates the responses from the replicas and
returns an adjudicated response to the consumer of the WS. This subsystem is also
responsible for reconfiguration (switching the releases on or off), recovery of the
failed releases and for logging the information which may be needed for further
analysis.

The architecture can be used to implement the forms of upgrade discussed above:
third-party WSs (Fig. 3, 4) and own component WSs (Fig. 5).

.

.

.
Monitoring

Tool
Management

Tool

Data Base

Web-Service 1.0
(Old)

WS Upgrating Environment

WSDL

WSDL

Upgrating Middleware

UDDI Registry

Web-Service 1.1
(New)

User (Service requester)

Requesting
process

Fig. 3. Architecture for managed upgrade of third-party Web Service deployed by the
consumer of the WS

.

.

.Monitoring
Tool

Management
Tool

Data Base

Web-Service 1.0
(Old)

WS Upgrating Environment

User
(Service requester)

WSDL

WSDL

WSDL

Upgrating Middleware

Composite Web Service

UDDI Registry

Third-party
Web Services

Web-Service 1.1
(New)

Fig. 4. Architecture for managed upgrade of third-party WS deployed as a composite WS

.

.

.
Monitoring

Tool
Management

Tool

Data Base
Web-Service 1.0

(Old)

WS Upgrating Environment

User
(Service requester)

WSDL

WSDL

WSDL

Upgrating Middleware

Web Service 1

UDDI Registry

Web-Service 1.1
(New)

Fig. 5. Architecture for managed upgrade of a WS deployed by the vendor of the WS

The architecture for managed upgrade of third-party WS can be deployed either as
part of the consumer of the WS (Fig. 3) or as a composite WS solely dedicated to the
management of the upgrade (Fig. 4). The architecture shown in Fig 5 which is
deployed by the WS provider and which makes the upgrade transparent for any
service subscriber is particularly relevant in practice since it allows for optimal
management of the upgrade based on full knowledge about the design and
implementation of the releases available to the vendor of the WS.

4.2 Operating Modes with Several WS Releases

There are some possible operating modes of the web services with several operational
releases:
1. Parallel execution for maximum reliability. All available releases of the WS are

executed concurrently and their responses are used by the middleware to produce
an adjudicated response to the consumer of the WS. Various adjudication
mechanisms can be used which range from tolerating evident failures only to
detecting and tolerating non-evident failures. In the latter case some form of self-
checking may be need which will allow for diagnosing which of the releases has
produced a (non-evidently) incorrect response before the adjudicated response can
be determined.

2. Parallel execution for maximum responsiveness. All available releases of the WS
are executed concurrently and the fastest non-evidently incorrect response is
returned to the consumer of the service as an adjudicated response.

3. Parallel execution with dynamically changed reliability/responsiveness. It is a
generalised parallel execution mode. All available releases of the WS are executed
concurrently. The middleware may be configured to wait for up to a certain
number of responses to be collected from the deployed releases, but no longer than

a pre-defined timeout. The actual responses collected are then adjudicated to
define the response returned to the consumer of the WS. The number of responses
and the timeout can be changed dynamically so that different configurations for the
adjudicated response can be defined.

4. Sequential execution for minimal server capacity. The releases of the WS are
executed sequentially (the order of execution can be chosen randomly or can be
predefined). The subsequent releases are only executed if the responses received
from the previous releases are evidently incorrect. A variation of this mode would
be to collect more than one non-evidently incorrect responses and adjudicate them
using an appropriate rule.

4.3 Monitoring and Measurement

The monitoring subsystem conducts measurement of the dependability characteristics
including the confidence associated with them of the deployed releases of the WS,
compares their responses.

Every time the consumer invokes the WS this subsystem monitors the availability
(timeout can be used to detect if the service is down), execution time and the
correctness of the responses for each releases of the WS and stores these parameters
in a database. Detecting non-evident failures and diagnosing the release which has
returned a non-evidently incorrect response is far from trivial. The implications of
using imperfect detection/diagnosis for the confidence are scrutinised in section 5.1.

4.4 Management

The main functions of this subsystem are controlling several operational releases and
choosing the current operational mode, which is based on dependability assessment
conducted by the monitoring subsystem. Adjudicating the responses collected from
the deployed releases and returning a response to the consumer of the WS is also a
responsibility of this subsystem. The adjudication mechanisms have already been
discussed together with the operating modes in section 4.2.

5 Assessment and Modelling

5.1 Bayesian Approach to Assessment of Confidence in Web-Service

In this section we illustrate how the Bayesian approach is normally applied to
assessing the confidence associated with a single dependability attribute, e.g. the
probability of failure on demand (pfd).

If the WS is treated as a black box, i.e. one can only distinguish between failures or
successes (Fig. 6), the Bayesian assessment proceeds as follows.

Request

WS

Response

Fig. 6. Black-box model of a WS. The internal structure of the WS is unknown. Only
correctness of the response (success or failure) is recorded on each request and used in the
inference of the WS’s pfd

On every request the WS may succeed, i.e. return a correct response, or fail, i.e.
return an incorrect response or not return any response at all. The failure behaviour of
the WS is characterised by the probability of failure (pfd). Let us denote it as p. This
probability will vary between the environments in which the WS is used. The various
factors, which affect the pfd may be unknown with certainty, thus the value of pfd
may be uncertain. This uncertainty is captured by a (prior) probability distribution

)(•pf , which characterises the assessor’s knowledge about the system pfd prior to

observing the WS in operation. This distribution quantifies the assessor’s perception
that some values of pfd are more likely than some other values.

Assume further that the WS is subjected to n requests, a sample of demands drawn
from a ‘realistic’ operational environment (profile), and r failures are observed6.
Presented with the new evidence the assessor may change their a priori uncertainty
about the pfd of the WS. Now it will be represented by a posterior distribution,

),|(nrf p • , of p after the observations, which is defined as:

)()|,(),|(xfxrnLnrxf pp ∝ , (1)

where)|,(xrnL is the likelihood of observing r failures in n demands if the pfd were

exactly x, which in this case of independent demands is given by the binomial

distribution, rnr xx
r

n
xrnL −−








=)1()|,(.

(1) is the general form of the Bayes’s formula, applicable to any form of
likelihood and any prior distribution.

Now assume that the WS is implemented as shown in Fig. 5, i.e. two releases of
the WS are deployed in parallel, which see and process ‘independently’ a request
from a consumer of the WS. On each demand (request) there are 4 possible outcomes
which can be observed, given in Table 1 below. The four probabilities given in the
last column of Table 1 sum up to 1. Even if these probabilities are not known with
certainty, i.e. they are treated as random variables, their sum will be always 1. Thus, a
joint probability distribution of any three (out of the four listed in Table 1) of these
probabilities, e.g.),,(

111001 ,, •••pppf , gives an exhaustive description of the uncertainty

associated with the failure behaviour of the system, which in this cases consists of
WS1.0 and WS1.1. In statistical terms, the model has three degrees of freedom.

6 The number of observed failures can be 0.

Table 1. A joint probability distribution

Event WS 1.0 WS 1.1 Observed in n tests Probability
α Fails Fails r1 11p

β Fails Succeeds r2 10p

γ Succeeds Fails r3 01p

δ Succeeds Succeeds r4 00p

The probabilities that WS 1.0 will fail, let us denote it pA, and that WS 1.1 will fail,
pB, respectively, can be derived from the probabilities used in Table 1 as follows:

1110 pppA += and 1101 pppB += .

p11 represents the probability that both releases of the WS fail, hence the notation
pAB ≡ p11 captures well the intuitive meaning of the event it is assigned to.

Instead of using),,(
110110 ,, •••pppf we can use any other distribution, which can be

derived from it through functional transformation. In this section we will use
),,(,, •••

ABBA pppf .

It can be shown that for a given observation (r1, r2, and r3 in N demands) the joint
posterior distribution,),,,|,,(321,, rrrNf

ABBA ppp ••• , can be calculated as:

∫∫∫

=

ABBA

ABBA

ABBA

ABBA

ppp

ABBAppp

ABBAppp

ppp

dxdydzppprrrNLzyxf

ppprrrNLzyxf

rrrNzyxf

,,

321,,

321,,

321,,

),,|,,,(),,(

),,|,,,(),,(

),,,|,,(

, (2)

where),,|,,,(321 ABBA ppprrrNL is the likelihood of the observation [13].

The posterior distribution,),,,|,,(321,, rrrNf
ABBA ppp ••• , represents the updated

uncertainty about the system failure behaviour consistent with the prior and the
observations. From this distribution one can derive the marginal uncertainties
associated with the probabilities of failure of each of the releases,

)|(nobservatiof
Ap • ,)|(nobservatiof

Bp • and of the probability of coincident

failure of both releases,)|(nobservatiof
ABp • . For instance the distribution of the

probability of coincident failure,)|(nobservatiof
ABp • , can be derived from

),,,|,,(321,, rrrNf
ABBA ppp ••• by integrating out the ‘nuisance parameters’ PA and PB:

() ∫ ∫=
A B

BAABAB

P P

BAPPPP dPdPnrrrzyxfnrrrxf),,,|,,(,,,| 321,,321 (3)

Similarly the marginal posteriors,)|(nobservatiof
Ap • and)|(nobservatiof

Bp • ,

can be expressed as:

() ∫ ∫=
B AB

BAABA

P P

ABBPPPP dPdPnrrrzyxfnrrrxf),,,|,,(,,,| 321,,321 (4)

() ∫ ∫=
A AB

BAABB

P P

ABAPPPP dPdPnrrrzyxfnrrrxf),,,|,,(,,,| 321,,321 (5)

The expressions (3-5) can be used to calculate the confidence that the pair or each
of the channels meet a specific reliability target. For instance, the confidence that the
probability of failure of the old release is smaller than a given target, T, will be:

() ∫=≤
T

APA dPnobservatioxfTnobservatioPP
A

0

)|(| (6)

Using (6) we can calculate a set of percentiles for a set of confidence values, e.g.
{90%, 95%, 99%,…}. For instance, the 99% percentile of channel A, TA99%, is a

value of the PA such that ∫ =
%99

0

%99)|(
A

A

T

AP dPnobservatioxf .

5.1.1 Examples

We will illustrate how the Bayesian inference can be used to determine the duration
of the WS managed upgrade (Fig. 5), i.e. when the old release can be replaced by the
new one. We will use for this purpose several contrived but plausible scenarios.

5.1.1.1 Scenarios

Scenario 1
In this scenario we assume that the old release has been used for a very long time and,
as a result, its reliability has been measured accurately: its pfd is believed to be 10-3,
and the uncertainty associated with this is very low. The new release has been
significantly changed, compared with the old release. It is believed that the new
release is an improvement, i.e. that its pfd is lower than the pfd of the old release, but
since it has not seen a significant operational use there is a significant level of
uncertainty about how good the new release actually is. We parameterise this scenario
using the following prior distribution:
− The distribution of the pfd of the old release, PA, is a Beta(αA, βA) distribution,

)(•
Apf , defined in the range [0, 0.002] with parameters αA = 20, βA = 20, i.e. the

expected value of PA is indeed 10-3, consistent with the prior measurements. The
parameters are chosen such that the distribution mass is concentrated in a very
narrow interval, which adequately represent the low level of uncertainty about the
‘true’ pfd of the old release.

− The distribution of pfd of the new release, PB, is also a Beta(αB, βB) distribution,
)(•

Bpf , defined in the same range [0, 002], with parameters αB = 2, βB = 3,

chosen such that the expected value of PB is 0.8×10-3, i.e. slightly better than the
expected value of PA, but the level of uncertainty about the true pfd of the new
release is significant.

− We assumed that PA and PB are independently distributed, i.e.
)()(),(, ••=••

BABA pppp fff .

− We assume uniform distribution of the conditional probability PAB|PA,PB in the
range [0,min(PA, PB)], which represents the assessor being ‘indifferent’ about the
values of the probability of coincident failure. This, in fact, is a very conservative
assumption, since the expected value is 1/2 of min(PA, PB), i.e. the system is
expected to tolerate only 50% of the failures, which seems justified given the fact
that we are dealing with two releases of the same product.

Scenario 2
In this scenario we assume that the old release has been only used for a short time
without a failure. The uncertainty associated with the pfd of the release, therefore, is
significant. The new release has been produced following a very thorough
development process. However since this process has never been applied in the
context of WS there is a significant level of uncertainty about the pfd of the new
release, too.

The new release is conservatively considered to be worse than the old release. This
scenario is parameterised with the following prior distribution:
− The distribution of pfd of the old release, PA, is a Beta(αA, βA) distribution,

)(•
Apf , in the range [0, 0.01] with parameters αA = 1, βA = 10, i.e. the expected

value of PA is ~10-3, but a significant level of uncertainty is built-in this prior.
− The distribution of pfd of the new release, PB, is also a Beta(αB, βB) distribution,

)(•
Bpf , with parameters as in the first scenario αB = 2, βB = 3. The level of

uncertainty about the true pfd of the new release is significant.
− We assumed, again, that PA and PB are independently distributed, i.e.

)()(),(, ••=••
BABA pppp fff .

− As in the previous scenario, we assume uniform distribution of the conditional
probability PAB|PA,PB in the range [0,min(PA, PB)].

50,000 observations used with the two scenarios have been Monte-Carlo simulated
using the following parameters:

Scenario 1: PA = 10-3, PB|A failed = 0.3, PB|A did not fail = 0.5×10-3. The chosen
parameters define a marginal probability of failure for the new release PB = 0.8×10-3.
Thus the marginal pfd of both channels are equal to the expected values of their
respective distributions. The chance of coincident failure of the releases is significant:
every 3 out of 10 failures of the old release will coincide with failures of the new
release. This is, however, less frequent than assumed in the prior (every other failure
of the less reliable channel was assumed to coincide with a failure of the more reliable
channel).

Scenario 2: PA = 5×10-3, i.e. the actual pfd is significantly worse than assumed in
the prior (the mean of the prior distribution is 10-3), PB|A failed = 0.1, PB|A did not fail
= 0 (i.e. never failed on its own). The chosen parameters define a marginal probability
of failure for the new release PB = 0.5×10-3, an order of magnitude better than the old
release.

5.1.1.2 Upgrade criteria (switching from managed upgrade to WS 1.1)
We will apply a few plausible alternatives of switching from the old to the new
release as follows:
− Criterion 1: the new release, WS 1.1, reaches the dependability level offered by the

old release, WS 1.0, at the time of deploying the managed upgrade, i.e. as defined
by the prior distribution,)(•

Apf . For instance, if prior to the upgrade there P(PA ≤

X)= 99%, then the managed upgrade should last until P(PB ≤ X) = 99%, i.e. the
same confidence, 99%, is build that WS 1.1 is better than X. This scenario does not
address the possibility that during the managed upgrade the knowledge about WS
1.0 may also change: it may turn out to be worse or better than thought prior to
deploying the managed upgrade.

− Criterion 2: the new release, WS 1.1, reaches a predefined level of dependability
with a predefined level of confidence, e.g. P(PB ≤ 10-3) = 99%. Under this criterion
the dependability of the old release, WS 1.0, prior or during the managed upgrade
is irrelevant.

− Criterion 3: With a given confidence, e.g. 99%, the new release, WS 1.1, is better
than the old release, WS 1.0. In other words, for the 99% percentiles of the releases
the following inequality holds: TB99% ≤ TA99%. Clearly, this criterion takes into
account the possibility that the priors of both WS 1.0 and WS 1.1 may be
‘inaccurate’ and may evolve to different distributions during the managed upgrade.

5.1.1.3 Imperfection of failure detection
As described above, Bayesian inference depends on the observations and, thus,
imperfection in detecting failures of WS releases will, inevitably, affect the
posteriors, hence the decisions when to switch to using the new release. We simulated
omission failures only, i.e. such that some demands on which the releases did fail
were counted as being correct. This type of failure may have dangerous
consequences. First, because incorrect responses may have been returned to the
consumers of the WSs, and, second, because the inference may produce optimistic
predictions, which, in turn, may lead to premature decisions to switch to the new
release before the required confidence has been achieved. The following omission
failures have been simulated:
− omission failure of the ‘oracles’ judging the correctness of the responses from each

of the releases;
− back-to-back testing under the pessimistic assumption that all coincident failures

will be identical and non- evident.
The first kind on failure will lead to changes of the scores on a demand of a release
from ‘1’ (failure) to ‘0’ (success). The greater the likelihood of such a failure the
more optimistic the observations become – in the extreme case when the omission

failure takes place with probability 1 – the inference will be supplied with
observations ‘No failure’ no matter how many times the release in question has failed.

The effect of the second kind of failure on the observations will be limited to those
demands on which both releases fail. In this case the scores ‘11’ (coincident failure of
both releases) will be replaced by ‘00’ (success of both). Clearly, in real operation
there may be coincident but different failures, which will be detected by back-to-back
testing and there is a good chance that on this demand the score of at least one of the
releases will be correctly counted as a failure.

We did not include in our study the ‘false alarm’ type of failure of the failure
detection mechanisms, i.e. when an ‘oracle’ flags out as a failure a valid response
from a release. Although in practical systems this may be a concern, its implications
are not dangerous: the consumers may be required to ignore valid responses and the
inference will produce pessimistic predictions. As a result the decision to switch to
the new release may be delayed beyond the sufficient evidence that the new release
has met the set dependability target.

5.1.1.4 Inference results
The results of the study are summarised below in Table 2, in which we show for the 3
criteria specified in 5.1.1.2 how long the managed upgrade (Fig. 5) should last before
switching from WS 1.0 to WS 1.1. For Criterion 2 we used P(PB ≤ 10-3)=99% as the
target for the switch.

Table 2. Duration of managed upgrade

Criterion 1 Criterion 2 Criterion 3

Perfect ‘oracles’ 35,500 demands Not attainable
(> 50,000)

40,000 demands

Omission, Pomit = 0.15 22,000
(oscillates till 26,000)

50,000 demands 35,000 demands

Sc
en

ar
io

 1

Back-to-back testing 20,000 40,000 34,000 demands

Perfect ‘oracles’ 1,400 demands 10,000 demands 1,100 demands

Omission, Pomit = 0.15 1,400 demands 7,000 1,100 demands

Sc
en

ar
io

 2

Back-to-back testing 1,400 demands 6,000 demands 1,100 demands

One can see from Table 2 that the effect of the detection coverage upon the
duration of the managed upgrade is significant, which is hardly surprising. We further
use 90% and 99% percentiles to illustrate the relationship between the failure
detection coverage and the confidence. Fig. 7, clearly indicates, however, the link that
exists between the imperfection of the detection mechanism deployed and the
confidence in having achieved the specified target, Criterion 1 in this case. For
instance, consider the 90% percentile that the new release is as reliable as the old
release was prior to the upgrade (the solid thin curve in Fig. 1). This percentile
remains always lower not only than the 99% percentile with perfect oracle (which is
always the case), but also than the 99% percentile with imperfect oracles which miss
a failure with probability 0.15. In other words, using imperfect oracles with detection

coverage of 85% (which is often seen as achievable, e.g. [14]) and using Bayesian
inference in this case means that the confidence error caused by the imperfection of
the oracles is no greater than 9%. At any stage of the inference what the assessor
would consider to be a 99% percentile on the pfd of the new release will actually be
no worse than 90% percentile.

Imperfect Detection vs. Confidence

0

0.0002

0.0004

0.0006

0.0008

0.001

0.0012

0.0014

0.0016

0.0018

0.002

0

60
00

80
00

10
00

0

12
00

0

14
00

0

16
00

0

18
00

0

20
00

0

22
00

0

24
00

0

26
00

0

28
00

0

30
00

0

32
00

0

34
00

0

36
00

0

38
00

0

40
00

0

42
00

0

44
00

0

46
00

0

48
00

0

50
00

0

Number of Demands

P
er

ce
n

ti
le

s

Ch B: 90% Percentile (perfect oracles)

Ch B: 99% Percentile (Pmiss=0.15)

Ch B: 99% Percentile (back-to-back testing)

Ch B: 99% Percentile (perfect oracles)

Ch A: 99% Percentile (perfect oracles)

Fig. 7. Scenario 1: percentiles for perfect and imperfect failure detection

The difference between the inference with perfect detection and back-to-back testing
is slightly different – the error up to ~20,000 demands does not exceed 9% and then
becomes greater than 9%. Incidentally, it is 20,000 demands when the decision will
be taken to switch to the new release (Table 2), i.e. the actual confidence achieved at
this time will be no worse than 90%.

It is worth mentioning that the number of demands needed in order to get the
required level of confidence under Scenario 1 are significant. This is a consequence
of the pfd targets being very close to what the real reliability of the new release is (the
explicitly stated target of 10-3 remains unattainable with perfect detection even after
50,000 demands). A significant number of failures is observed which does not allow
the assessor to build quickly the required confidence.

Scenario 2 in this respect is very different – the targets to be met by the new
release are significantly worse than what the ‘true’ pfd of this release is. Under this
scenario the prior confidence in the old release was also low due to the minimal
operation exposure of this release. As a result, meeting the set targets (with all 3
criteria) requires significantly fewer demands. The effect of imperfect detection on
the decision to switch to the new release under this scenario is illustrated in Fig. 8.
The 90% percentile with perfect failure detection remains lower than the 99%

percentile with imperfect detection throughout the entire range of demands of
interest, including the values when a decision to switch to the new release will be
taken (up to 7000 demands). Thus, again, the effect imperfect of the failure detection
on the confidence is relatively modest – the error is less than 9%.

Imperfect Detection vs. Lower Confidence

0

0.001

0.002

0.003

0.004

0.005

0.006

0.007

0.008

0.009

0.01

0

30
00

35
00

40
00

45
00

50
00

55
00

60
00

65
00

70
00

75
00

80
00

85
00

90
00

95
00

10
00

0
Number of Demands

P
er

ce
n

ti
le

s

Ch A: 99% Percentile (perfect oracles)

Ch B: 90% Percentile (perfect oracles)

Ch B: 99% Percentile (perfect oracles)

Ch B: 99% Percentile (back-to-back testing)

Fig. 8. Scenario 2: percentiles for perfect and imperfect failure detection

5.1.2 Realism of Bayesian inference in the context of Web-Services
Two important aspects of using Bayesian assessment in the context of Web-services
are worth mentioning:
1. The choice of a prior is important, as it is for Bayesian inference in any other

context. In the context of a managed upgrade we use a white-box inference, which
requires a trivariate distribution,),,(,, •••

ABBA pppf to be defined. This is far from

trivial. It is reasonable to expect that the marginal distributions,)(•
Apf and

)(•
Bpf , will be available in some form. The old release will have seen some (in

some cases long) operational exposure, which is relatively straightforward to
translate into confidence using a black-box inference. The new release will have
been subjected to some level of testing, but the prior will be largely based on
expert judgement, and thus will leave significant uncertainty about the true value
of the pfd. The real difficulty is in defining the third variate of the distribution,
which characterises how likely the two releases of the WS are to fail together.
Since we are dealing with two releases of the same service it is plausible to assume

high level of correlation between their failures7. The ‘indifference’ assumption,
which we used in our examples, seems a safe option. Even if the prior is inaccurate
we leave it ‘open to quick changes’ as new empirical evidence becomes available
(‘data will speak for itself’). The downside of the safe option is that it will take
some time for the error in the prior to be compensated, which will delay the
decision to switch to the new release. This is, however, the inevitable price to be
paid for the extra assurance that the WS dependability will not deteriorate as a
result of the upgrade.

2. Coverage of the deployed failure detection mechanism. We have only touched
upon this aspect due to the limited space and further studies are needed in order to
get further insight into the relationship between the detection coverage and the
confidence achieved. The results presented here seem to suggest that this problem
can be tackled relatively simply. In our examples we saw a consistent picture that
~10% imperfection of failure detection translates into error in predicted confidence
less than 10%. If this is consistent across many systems a relatively simple
engineering rule of thumb can be defined so that despite the errors the needed
confidence is actually achieved and one can proceed with the switch to the new
release. In fact the limited coverage of failure detection is not necessarily a
problem! It is clearly a problem when an explicit dependability target for the new
release is stated (Criterion 2), but we doubt that this criterion is appropriate for the
context of the WS upgrade. Indeed, it seems always worth deploying the more
dependable release, even if it does not meet an explicitly stated higher target.
Making a decision to switch to the new release based on comparison of the two
releases (i.e. Criterion 1 or 3 defined above) seems much more plausible than wait
until the new release meets an explicit target. Under these circumstances both
releases will have been affected by the limited coverage of the deployed detection
mechanisms. It seems reasonable to assume that the imperfect detection will affect
both releases similarly, hence the decision to switch even based on inaccurate
measurements will be justified.

Despite these problems, it seems clear that Bayesian inference can be used to assess
the confidence in dependability of WS releases and control the managed upgrade of
WSs.

5.2 Simulation Modelling of the Dependable WS Upgrading

5.2.1 Model Description
An event-driven simulation model, executed in the MATLAB 6.0 environment,

was developed to analyse the effectiveness, both in terms of improved dependability
and performance, of the managed WS upgrade. Below we present the simulation

7 This plausible view is counterbalanced by the empirical fact that in many cases the new

releases of software products may fail in circumstances where the old releases do not. Thus,
even if the new release fixes faults in the old release(s) it is far from clear whether the new
release is always an improvement and what might be a plausible expectation regarding the
coincident failures.

results obtained for running concurrently two releases of a WS. The middleware for
managed upgrade implements the following rules:
1. A request from a consumer is forwarded to both releases;
2. The middleware waits to collect responses from the releases, but no longer than a

predefined Timeout. The collected responses are adjudicated and the consumer of
the WS is presented with the adjudicated response. The implemented adjudication
rules are as follows:

− if all collected responses are evidently incorrect then the middleware raises an
exception (i.e. the adjudicated response itself is evidently incorrect);

− if all releases return the same response (correct or non-evidently incorrect) then
this response is returned to the consumer of the Web Service, too;

− if all the responses collected from the releases are valid (i.e. none is evidently
incorrect), then the middleware returns to the consumer of the Web service a
response, selected at random from the ones collected. Clearly, even if a correct
response exists among the collected ones a possibility still exists that the consumer
of the Web service gets an incorrect response, when the middleware picks at
random an incorrect response from those collected;

− if the TimeOut expires and a single valid response is collected this response is
returned to the consumer of the Web service, which may turn out to be non-
evidently incorrect.

− if no response has been collected the middleware returns a response ‘Web Service
unavailable’.

It takes each release some time (execution time) to respond to a request. The
execution times of the releases may be affected by various factors. The execution
time is modelled as a sum of two components as follows:

Ex. Time(Release(i))=T1+T2(i) (7)

where T1 – is the same for both releases and models the computational difficulty of
the demand, which is common for both releases, while T2(i) may differ for the two
replicas and may be due to differences between the releases. Both T1 and T2 are
simulated as exponentially distributed random variables, exp(T1Mean),
exp(T2Mean1) and exp(T2Mean2), respectively, with different parameters.

The overall execution time of the system with several operational releases of the
WS is calculated as:

Ex. time(WS) = min(TimeOut, max(Ex. time(Release(i)))+dT (8)

where dT is the time taken by the middleware to adjudicate the release responses.
The behaviour of the releases is simulated under the assumption that a degree of

correlation between the types of responses exists which is modelled through a set of
conditional probabilities:

P(slower response is X | faster response is Y) (9)

Where the types of responses (X and Y) are:
− correct (CR);
− evident failure (ER);
− non-evident failure (NER).

A special case would be independence of the behaviour of the releases (i.e. the type
of response they returns on demand), which is included in our results for reference,
although it is clearly unrealistic.

5.2.2 Simulation Settings

Table 3. Marginal probabilities associated with the responses of the releases

Independent probabilities for different outcomes
Release 1 (Rel1) Release 2 (Rel2)Run

CR ER NER CR ER NER
1 0.70 0.15 0.15 0.70 0.15 0.15
2 0.70 0.15 0.15 0.60 0.20 0.20
3 0.70 0.15 0.15 0.50 0.25 0.25
4 0.60 0.20 0.20 0.40 0.30 0.30

Table 4. Conditional probabilities associated with the response from the slower release (10)

Probabilities: P(outcome Rel2 | outcome Rel1)Run Condition
CR ER NER

CR 0.90 0.05 0.05
ER 0.05 0.90 0.051

Outcome of
Release 1

NER 0.05 0.05 0.90
CR 0.80 0.10 0.10
ER 0.10 0.80 0.102

Outcome of
Release 1

NER 0.10 0.10 0.80
CR 0.70 0.15 0.15
ER 0.15 0.70 0.153

Outcome of
Release 1

NER 0.15 0.15 0.70
CR 0.40 0.30 0.30
ER 0.30 0.40 0.304

Outcome of
Release 1

NER 0.30 0.30 0.40

The execution times were simulated with the following parameters:
− T1Mean=0.7 sec;
− T2Mean1 = T2Mean2=0.7 sec;
− dT=0.1 sec.
The choice of simulation parameters was dictated by us trying to cover realistic
scenarios. In particular we varied widely the degree of correlation between the
behaviour of the simulated channels both in terms of correct and different types of
incorrect responses.

5.2.3 Simulation Results
The simulation results – mean execution time and number of responses of different
types - are presented in Tables 4 and 5 obtained on 10,000 requests processed under
different regimes, as defined in section 5.2.2.

Table 5. Simulation results assuming positive correlation between release failures

TimeOut = 1.5 sec TimeOut = 2.0 sec TimeOut = 3.0 sec
Run Observations

Rel1 Rel2 System Rel1 Rel2 System Rel1 Rel2 System

MET8 1.0077 1.0054 1.2194 1.0077 1.0054 1.2290 1.0077 1.0054 1.2357
CR 6709 6230 6762 6785 6301 6815 6840 6348 6851

EER 1443 1668 1449 1460 1690 1470 1470 1706 1475
NER 1412 1664 1463 1428 1676 1472 1437 1686 1480

O
ut

co
m

es

Total 9564 9562 9674 9673 9667 9757 9747 9740 9806
NRDT9 436 438 326 327 333 243 253 260 194

1

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000
2 MET 0.9955 0.9912 1.2052 0.9955 0.9912 1.2148 0.9955 0.9912 1.2214

CR 6733 5706 6683 6819 5764 6755 6866 5802 6780
EER 1420 1944 1502 1436 1964 1506 1452 1982 1529

NER 1414 1941 1504 1434 1962 1514 1447 1983 1522

O
ut

co
m

es

Total 9567 9591 9689 9689 9690 9775 9765 9767 9831
NRDT 433 409 311 311 310 225 235 233 169

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000
MET 0.9870 0.9949 1.2153 0.9870 0.9949 1.2153 0.9870 0.9949 1.2213

CR 6777 5231 6661 6777 5231 6672 6823 5268 6702
EER 1438 2217 1530 1438 2217 1521 1449 2230 1526
NER 1492 2269 1611 1492 2269 1609 1503 2283 1618

O
ut

co
m

es

Total 9707 9717 9802 9707 9717 9802 9775 9781 9846
NRDT 293 283 198 293 283 198 225 219 154

3

Total req. 10000 10000 10000 10000 10000 10000 10000 10000 10000
MET 0.9966 0.9925 1.2097 0.9966 0.9925 1.2183 0.9966 0.9925 1.2246

CR 6744 3519 6395 6808 3559 6462 6845 3581 6491
EER 1434 3016 1635 1444 3042 1629 1457 3065 1631
NER 1436 3076 1679 1456 3106 1689 1467 3134 1705

O
ut

co
m

es

Total 9614 9611 9709 9708 9707 9780 9769 9780 9827
NRDT 386 389 291 292 293 220 231 220 173

4

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000

8 MET – mean execution time, in sec.
9 NRDT – no response received within TimeOut

Table 6. Simulation results assuming independence of release failures

TimeOut = 1.5 sec TimeOut = 2.0 sec TimeOut = 3.0 sec
Run Observations

Rel1 Rel2 System Rel1 Rel2 System Rel1 Rel2 System
MET 0.9995 0.9959 1.2095 0.9995 0.9959 1.2191 0.9995 0.9959 1.2267

CR 6729 6647 7759 6794 6709 7812 6852 6770 7853
EER 1406 1447 755 1424 1458 758 1432 1473 768
NER 1453 1481 1177 1471 1496 1194 1483 1514 1201

O
ut

co
m

es

Total 9588 9575 9691 9689 9663 9764 9767 9757 9822
NRDT 412 425 309 311 337 236 233 243 178

1

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000
MET 1.0086 1.0081 1.2239 1.0086 1.0081 1.2327 1.0086 1.0081 1.2386

CR 6730 5712 7396 6805 5780 7470 6856 5824 7509
EER 1428 1928 1021 1443 1947 1017 1454 1956 1013
NER 1424 1949 1286 1446 1971 1292 1455 1992 1309

O
ut

co
m

es

Total 9582 9589 9703 9694 9698 9779 9765 9772 9831
NRDT 418 411 297 306 302 221 235 228 169

2

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000
MET 0.9856 0.9894 1.2013 0.9856 0.9894 1.2107 0.9856 0.9894 1.2175

CR 6700 4816 6982 6775 4869 7039 6834 4904 7079
EER 1432 2400 1203 1446 2424 1226 1459 2445 1245
NER 1458 2378 1510 1471 2404 1515 1483 2436 1519

O
ut

co
m

es

Total 9590 9594 9695 9692 9697 9780 9776 9785 9843
NRDT 410 406 305 308 303 220 224 215 157

3

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000
MET 0.9884 0.9926 1.2031 0.9884 0.9926 1.2126 0.9884 0.9926 1.2193

CR 6687 3855 6624 6762 3887 6680 6813 3917 6704
EER 1419 2823 1416 1434 2865 1429 1444 2885 1444
NER 1484 2886 1656 1504 2928 1672 1518 2955 1687

O
ut

co
m

es

Total 9590 9564 9696 9700 9680 9781 9775 9757 9835
NRDT 410 436 304 300 320 219 225 243 165

4

Total requests 10000 10000 10000 10000 10000 10000 10000 10000 10000

The simulation results can be summarised as follows:
1. The system availability offered by the architecture for managed upgrade is higher

than the availability of each of the versions. This is to be expected since the system
is a 1-out-of-2 system. This observation is important because it reduces the
pressure of having to switch to the new release quickly. From the point of view of
dependability the managed upgrade is the best alternative – the 1-out-of-2 by
definition is no worse than the more reliable channel. Thus we can prolong the
switch to the new release as long as necessary without any negative implications
for the dependability of the service.

2. The mean execution time recorded for the system is greater than for the individual
releases. This is the price for the improved dependability assurance provided by
the fault-tolerant architecture – it waits for the second (i.e. slower) response before
adjudicating the responses. Some improvement can be achieved by returning to the
consumer the fastest response as soon it is received. dT is inherent for the chosen

architecture and cannot be eliminated. The performance penalty inevitable with the
managed upgrade is the real reason for us to try to minimise its duration.

3. Somewhat unexpected result from this simulation is the fact that when the releases
are assumed highly correlated (the first run in Table 5 with correlation between the
releases 0.9) the reliability of the system is higher than the reliability of either of
the two releases. When the correlation between the releases goes down (runs 2-4 in
Table 5 with correlation 0.8 – 0.4) the system reliability remains better than the
less reliable release (normally the old release) but is now worse than the reliability
of the better release (normally the new release). This observation, true with respect
to all types of responses - correct and incorrect – may be due to the specific way
the correlation between the releases has been parameterised (Table 4). A more
detailed study with a wider variety of values and different combinations of the
conditional probabilities will provide further details about the interplay between
the properties of the individual releases and of the chosen architecture for managed
upgrade.

4. For the second set of simulation runs (Table 6) under the assumption that the
responses of the releases are independent, the system reliability is better than the
reliability of both releases. This observation is good news – fault-tolerance works.
However, the result does not seem particularly useful because the assumption of
independence is implausible: after all the two releases are likely to be very similar
(significant portion of the code will be reused in the newer release). Software
faults present in the older release and not fixed in the newer release will lead to
identical failures.

The obtained results provide indications of the potential usefulness of the architecture
and of its limitation. Through extensive simulation one can identify the range of
possibilities which can be encountered in practice. The particular parameters of a real
life-system, e.g. which set of conditional probabilities describes best the concrete
system at hand, of course, is unknowable. However, the simulation results may help
in shaping the ‘prior’ for a Bayesian assessment of the chosen architecture for a
managed upgrade, as described in section 5.1 above.

6 Implementation

6.1 Test harness

A test harness is under development for experimenting with the architecture for a
managed upgrade of a third-party WS deployed as a composite WS (Fig. 4). It allows
the requests to the WS to be forwarded to the deployed releases of the WS
transparently for the consumers of the WS. When responses from the releases are
collected, the test harness adjudicates them and returns a response to the respective
consumer.

The test harness monitors the responses, using the calculated confidence in their
dependability and adjusts the adjudication accordingly. The consumers of the WS will

be offered a set of operations for changing the configuration of the test harness
according to their preferences:
− users can add new or remove some of the old releases of the WS (add or remove

URI to the WSDL description of the WS releases)
− users can specify the operational modes of the composite WS (serial or concurrent

execution of the deployed releases)
− users can explicitly specify the adjudication mechanism they would like applied to

their own requests to the WS (e.g. majority voter or other plans)
− the user can read back the confidence associated with each of the deployed releases

of the WS and calculated by the harness for different dependability attributes (e.g.
confidence in correctness, confidence in availability, etc.).

The test harness is being developed in Java using IBM WebSphere SDK for Web
Services10 (WSDK). Currently under development is the visual environment for the
managed upgrade of own and third-party WS, for which the Eclipse IDE11 will be
extended with a specialised plug-in, also under development.

6.2 ‘Publishing’ the Confidence in Dependability of Web Services

In this section we discuss some practical ways of ‘publishing’ the confidence (or
indeed any other dependability related measure) using the adopted standards for WSs.
The confidence is a probability and can be accurately represented by a floating point
number. To illustrate the idea of publishing the confidence let us consider a contrived
example of WS with the following fragment of its WSDL description:

<types>
 <s:schema … >
 <s:element name=”Operation1Request”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”param1” type=”s:int”>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”param2” type=”s:string”>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name=”Operation1Response”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”Op1Result” type=”s:string”>
 </s:sequence>
 </s:complexType>
 </s:element>
 …
</types>

In other words, the WS interface publishes an operation ”operation1” which requires
two parameters when invoked, ”param1” of type int and ”param2” of type string, and

10 http://www-106.ibm.com/developerworks/webservices/wsdk/
11 www.eclipse.org

returns a result ”Op1Result” of type string.12 Now assume that the WS provider
wishes to ‘publish’ the calculated confidence in the correctness of ”operation1”.

There are two ways of doing it:
− The response to a consumer invoking ”operation1” can be changed as follows:

 <s:element name=”Operation1Response”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”Op1Result” type=”s:string”>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”Op1Conf” type=”s:double”>
 </s:sequence>
 </s:complexType>
 </s:element>

− A new operation is defined which takes as a parameter the name of an operation
(for which the consumer seeks confidence) and returns the confidence in the
quality of the operation:

<s:element name=”OperationConfRequest”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”operation” type=”s:string”>
 </s:sequence>
 </s:complexType>
 </s:element>
 <s:element name=”OperationConfResponse”>
 <s:complexType>
 <s:sequence>
 <s:element minOccurs=”0” maxOccurs=”1”
 name=”Op1Conf” type=”s:double”>
 </s:sequence>
 </s:complexType>
 </s:element>

The advantage of the first implementation is that the confidence is associated with
every execution of ”operation1”. The obvious disadvantage is that the new WSDL
description is not backward compatible with the old one, which is not acceptable for
the existing WS but may be OK for newly deployed services.

The advantage of the second solution is that the new WSDL is backward
compatible with the old WSDL. The disadvantage is that the confidence will have to
be extracted in a separate invocation of a different operation published by the service
(“OperationConf” in the example above), which may lead to complications.

Finally, a third option exists, which combines the advantages of both solutions
given above. It consists of defining a new operation, e.g. ”operation1Conf”, in which
the response is extended by a number providing the confidence in the correctness of
the operation. This approach allows the ‘confidence conscious’ consumers to switch
to using ”operation1Conf”, while it does not break the existing client applications
which can continue to use ”operation1”, i.e. backward compatibility is achieved.

12 For the sake of brevity the fragments of the WSDL description related to messages, parts and

the service are not shown.

The confidence will have to be updated when necessary (e.g. by the service
provider). The clients will be able to get this information directly from the UDDI
archive. Both the clients and the provider will be able to keep this up to date. This
will, for example, allow the clients to collect and publicise information about the
confidence in the service, which in many situations is the most appropriate way of
collecting information about confidence as only the clients know exactly if the service
provided is correct. However, an architectural solution in which the WSDL
description of a WS is extended with additional information reflecting confidence in
this service, as was shown above, is more static.

Another two solutions are possible. The first one, which uses protocol handlers on
the service and client sides to transparently add/remove additional information
describing confidence to/from each XML message sent between the WS and clients,
is more structured and transparent. The protocol handlers should be able to
understand the additional information in the same way on both sides. This
architectural solution completely separates the application functionality from dealing
with the confidence-related issues and ensures compatibility in that when there is no
handler on the client side it keeps functioning.

The Web Service architecture allows us to develop another solution, which
consists of a dedicated trusted confidence service functioning as a mediator for all
messages sent to and from the WS. This mediator can monitor all messages and
express the confidence in a convenient way; an example of such an intermediary is
given in section 4.1 (Fig. 4). The advantage of this solution is a complete separation
of confidence from the client and service functionality. Moreover, it may be
beneficial to use such mediators as trusted-third parties in online negotiations between
clients and services. A disadvantage of this solution, clearly, is that the operational
‘evidence’ about how good the WS is will be generated by the traffic produced by the
consumers connected to the intermediary. In case significant traffic bypasses the
intermediary, i.e. many consumers interact directly with the WS, the confidence
reported by the intermediary may be out of date.

7 Discussion and Conclusions

7.1. Related Work

Paper [15] discusses an architectural framework that allows a WS to be distributed
into a number of nodes. The specific focus is on supporting uninterrupted service
when a service migrates from one node to another. This approach cannot be directly
used for WS upgrading when we want to make use of natural redundancy and diversity
existing in the system with old and new releases and when we want to make decisions
by measuring confidence in the old and new releases of an WS. Moreover, our
solution guarantees uninterrupted service. The approach proposed in [15] does not
explicitly work with any dependability-related characteristics of the WS (such as
confidence).

The Hercules framework [16] relies on the same idea [3] of ensuring reliability of
upgrading by employing old and new releases. But the main focus of this work is on
formal specification of specific subdomains on which different releases of a
component work correctly. Our approach uses confidence in service as the main
characteristics used to reasoning about its dependability. Moreover, our technique is
oriented towards the Web Service architecture with a special emphasis on service
specification description and using service registries to publicize services.

7.2. Outstanding Issues

Due to space limitations we could not address several practical aspects of
implementing the proposed managed upgrade. A few are discussed in this section,
while others will be covered in our future work.

One of the reasons for introducing the managed upgrade is the lack of notification
of consumers when an WS is upgraded, which may be useful in the context of the
managed upgrade, e.g. if the managed upgrade is deployed by consumers. Here we
explicitly discuss various ways for implementing such notification. It could be used to
initiate the managed upgrade from the old to the new release. There are several
degrees of notification and various ways of implementing it. One possibility is to use
the existing registry mechanism and extend the WSDL description of a WS by adding
a reference to a new release of a WS; this would allow a consumer to detect this with
both releases staying operational. Another possibility is to use a WS notification
service13 as a separate mechanism to inform all the consumers of a WS about a new
release. A similar approach would be to explicitly notify subscribers (consumers)
using some form of “callback” function to consumers of a WS.

Another problem with the proposed approach to using the confidence in the
dependability of the releases is defining a plausible ‘prior’ about the dependability of
the new release. A related issue, which affects the accuracy of the confidence in the
dependability of the releases and the effectiveness of the managed upgrade, is the
perfection of the ‘oracles’ (adjudicators) of the responses from the releases. We
touched upon these problems in section 5.1 and provided some initial assessment of
the impact of imperfect detection on the predicted confidence. However, further
extensive studies are needed, e.g. via simulation, to assess how severe the problem of
imperfect detection is. More importantly, such studies may allow for measures to be
found which, if put in place, e.g. implemented in the middleware for the managed
upgrade, will reduce the problem to an acceptable level.

7.3. Conclusion

We have addressed various aspects of a dependable on-line upgrade of a WS. We
concentrated on the managed upgrade in which two releases of the service can be
deployed and discussed the implications of using a standard fault-tolerant architecture

13 http://www-106.ibm.com/developerworks/webservices/library/specification/ws-

notification/

in which the releases are used as ‘independent’ channels. We argued that the
confidence in dependability can be calculated and used to make a decision when to
switch the consumers of the WS from the old to the new release: when the confidence
in the dependability of the new release becomes ‘sufficiently’ high. Through
simulation we confirmed that the managed upgrade can deliver some improvement
compared with the situations when either of the releases is used.

Finally, we discussed the advantages and disadvantages of various alternative ways
of deploying the managed upgrade: i) by the consumers of the service, ii) by the
provider or iii) by an independent broker.

Acknowledgements. This work is partially supported by the Royal Society grant (RS
16114) and by the UK Engineering and Physical Sciences Research council (EPSRC)
(DOTS Project). A. Romanovsky is partially supported by IST RODIN project (IST
511599).

References

1. W3C Working Group, Web Services Architecture. 2004.
http://www.w3.org/TR/2004/NOTE-ws-arch-20040211/

2. Romanovsky, A. and I. Smith. Dependable On-line Upgrading of Distributed Systems
COMPSAC'2002. 2002. Oxford. p. 975-976.

3. Randell, B., System Structure for Software Fault Tolerance. IEEE Transactions on Software
Engineering, 1975. SE-1(2): p. 220-232.

4. Ferguson, D.F., T. Storey, et al., Secure, Reliable, Transacted Web Services: Architecture
and Composition. 2003, Microsoft and IBM.

5. Tartanoglu, F., V. Issarny, et al., Dependability in the Web Service Architecture, in
Architecting Depndable Systems. 2003, Springer-Verlag. p. 89-108.

6. Avizienis, A., J.-C. Laprie, et al., Basic Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Transactions on Dependable and Secure Computing, 2004. 1(1):
p. 11-33.

7. AmperPoint, Managing Exceptions in Web Services Environment. 2003.
http://www.eaiindustry.org/docs/member%20docs/amberpoint/AmberPoint_Managing_Exc
eptions.pdf

8. Chandra, S., Chen, P. M. Whither Generic Recovery from Application Faults? A Fault Study
using Open-Source Software International Conference on Dependable Systems and
Networks (DSN'2000). 2000, June. NY, USA. p. 97-106.

9. Deswarte, Y., K. Kanoun and J.-C. Laprie. Diversity against Accidental and Deliberate
Faults Computer Security, Dependability and Assurance: From Needs to Solutions. 1998.
York, England and Washington, D.C., USA: IEEE Computer Society Press.

10. Kharchenko, V., P. Popov and A. Romanovsky. On Dependability of Composite Web
Services with Components Upgraded Online. In Supplemental Volume Workshop on
Architecting Dependable Systems (WADS-DSN'2004). 2004. Florence, Italy. p. 287-291.

11. Box, G.E.P. and G.C. Tiao, Bayesian Inference in Statistical Analysis. 1973: Addison-
Wesley Inc. 588.

12. Littlewood, B. and D. Wright, Some conservative stopping rules for the operational testing
of safety-critical software. IEEE Transactions on Software Engineering, 1997. 23(11):
p. 673-683.

13. Littlewood, B., P. Popov and L. Strigini, Assessing the Reliability of Diverse Fault-
Tolerant Software-Based Systems. Safety Science, 2002. 40: p. 781-796.

14. Cukier, M., D. Powell and J. Arlat, Coverage Estimation Methods for Stratified Fault-
Injection. IEEE Transactions on Computers, 1999. 48(7): p. 707-723.

15. Alwagait, E. and S. Ghandeharizadeh. DeW: A Dependable Web Services Framework 14th
International Workshop on Research Issues on Data Engineering: Web Services for E-
Commerce and E-Government Applications (RIDE'04). 2004. Boston, Massachusetts.
p. 111-118.

16. Cook, J.E. and J.A. Dage. Highly Reliable Upgrading of Components The 21st
International Conference on Software Engineering (ICSE 1999). 1999. p. 203-212.

