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Abstract: This paper gives the main definitions relating to dependability, a generic

concept including as special case such attributes as reliability, availability,

safety, confidentiality, integrity, maintainability, etc. Basic definitions are

given first. They are then commented upon, and supplemented by additional

definitions, which address the threats to dependability (faults, errors, failures),

and the attributes of dependability. The discussion on the attributes

encompasses the relationship of dependability with security, survivability and

trustworthiness.
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1. ORIGINS AND INTEGRATION OF THE

CONCEPTS

The delivery of correct computing and communication services has been

a concern of their providers and users since the earliest days. In the July

1834 issue of the Edinburgh Review, Dr. Dionysius Lardner published the

article “Babbage’s calculating engine”, in which he wrote:

“The most certain and effectual check upon errors which arise in the

process of computation, is to cause the same computations to be made

by separate and independent computers; and this check is rendered still

more decisive if they make their computations by different methods”.
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It must be noted that the term “computer” in the previous quotation refers

to a person who performs computations, and not the “calculating engine”.

The first generation of electronic computers (late 1940’s to mid-50’s) used

rather unreliable components, therefore practical techniques were employed to

improve their reliability, such as error control codes, duplexing with

comparison, triplication with voting, diagnostics to locate failed components,

etc. At the same time J. von Neumann [von Neumann 1956], E. F. Moore and

C. E. Shannon [Moore & Shannon 1956], and their successors developed

theories of using redundancy to build reliable logic structures from less

reliable components, whose faults were masked by the presence of multiple

redundant components. The theories of masking redundancy were unified by

W. H. Pierce as the concept of failure tolerance in 1965 [Pierce 1965].

In 1967, A. Avižienis integrated masking with the practical techniques of

error detection, fault diagnosis, and recovery into the concept of fault-

tolerant systems [Avižienis 1967]. In the reliability modeling field, the major

event was the introduction of the coverage concept by Bouricius, Carter and

Schneider [Bouricius et al. 1969]. Work on software fault tolerance was

initiated by Elmendorf [Elmendorf 1972], later it was complemented by

recovery blocks [Randell 1975], and by N-version programming [Avižienis
& Chen, 1977].

The formation of the IEEE-CS TC on Fault-Tolerant Computing in 1970

and of IFIP WG 10.4 Dependable Computing and Fault Tolerance in 1980

accelerated the emergence of a consistent set of concepts and terminology.

Seven position papers were presented in 1982 at FTCS-12 in a special

session on fundamental concepts of fault tolerance [FTCS 1982], and

J.-C. Laprie formulated a synthesis in 1985 [Laprie 1985]. Further work by

members of IFIP WG 10.4, led by J.-C. Laprie, resulted in the 1992 book

Dependability: Basic Concepts and Terminology [Laprie 1992], in which the

English text was also translated into French, German, Italian, and Japanese.

In this book, intentional faults (malicious logic, intrusions) were listed along

with accidental faults (physical, design, or interaction faults). Exploratory

research on the integration of fault tolerance and the defenses against

deliberately malicious faults, i.e., security threats, was started in the mid-80’s

[Dobson & Randell 1986], [Joseph & Avižienis 1988], [Fray et al. 1986].

The first IFIP Working Conference on Dependable Computing for

Critical Applications (DCCA) was held in 1989. This and the six Working

Conferences that followed fostered the interaction of the dependability and

security communities, and advanced the integration of security

(confidentiality, integrity and availability) into the framework of dependable

computing. Since 2000, the DCCA Working Conference together with the

FTCS became parts of the International Conference on Dependable Systems

and Networks (DSN).
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2. THE BASIC CONCEPTS

In this section we present a basic set of definitions (in bold typeface) that

will be used throughout the entire discussion of the taxonomy of dependable

computing. The definitions are general enough to cover the entire range of

computing and communication systems, from individual logic gates to

networks of computers with human operators and users.

2.1 System Function, Behavior, Structure, and Service

A system in our taxonomy is an entity that interacts with other entities,

i.e., other systems, including hardware, software, humans, and the physical

world with its natural phenomena. These other systems are the environment

of the given system. The system boundary is the common frontier between

the system and its environment.

Computing and communication systems are characterized by four

fundamental properties: functionality, performance, dependability, and cost.

Those four properties are collectively influenced by two other properties:

usability and adaptability. The function of such a system is what the system

is intended to do and is described by the functional specification in terms of

functionality and performance. Dependability and cost have separate

specifications. The behavior  of a system is what the system does to

implement its function and is described by a sequence of states. The total

state of a given system is the set of the following states: computation,

communication, stored information, interconnection, and physical condition.

The structure of a system is what enables it to generate the behavior.

From a structural viewpoint, a system is a set of components bound together

in order to interact, where each component is another system, etc. The

recursion stops when a component is considered to be atomic: any further

internal structure cannot be discerned, or is not of interest and can be

ignored.

The service delivered by a system (the provider) is its behavior as it is

perceived by its user(s); a user is another system that receives service from

the provider. The part of the provider’s system boundary where service

delivery takes place is the service interface. The part of the provider’s total

state that is perceivable at the service interface is its external state; the

remaining part is its internal state. The delivered service is a sequence of

the provider’s external states. We note that a system may sequentially or

simultaneously be a provider and a user with respect to another system, i.e.,

deliver service to and receive service from that other system.

It is usual to have a hierarchical view of a system structure. The relation

is composed of, or is decomposed into, induces a hierarchy; however it

relates only to the list of the system components. A hierarchy that takes into

account the system behavior is the relation uses [Parnas 1974, Ghezzi et al.
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1991] or depends upon [Parnas 1972, Cristian 1991]: a component a uses, or

depends upon, a component b if the correctness of b's service delivery is

necessary for the correctness of a's service delivery.

We have up to now used the singular for function and service. A system

generally implements more than one function, and delivers more than one

service. Function and service can be thus seen as composed of function items

and of service items. For the sake of simplicity, we shall simply use the

plural — functions, services — when it is necessary to distinguish several

function or service items.

2.2 The Threats: Failures, Errors, Faults

Correct service is delivered when the service implements the system

function. A service failure is an event that occurs when the delivered service

deviates from correct service. A service fails either because it does not

comply with the functional specification, or because this specification did

not adequately describe the system function. A service failure is a transition

from correct service to incorrect service, i.e., to not implementing the system

function. The period of delivery of incorrect service is a service outage. The

transition from incorrect service to correct service is a service restoration.

The deviation from correct service may assume different forms that are

called service failure modes and are ranked according to failure severities.

A detailed taxonomy of failure modes is presented in Section 4.

Since a service is a sequence of the system’s external states, a service

failure means that at least one (or more) external state of the system deviates

from the correct service state. The deviation is called an error. The adjudged

or hypothesized cause of an error is called a fault. In most cases a fault first

causes an error in the service state of a component that is a part of the

internal state of the system and the external state is not immediately affected.

For this reason the definition of an error is: the part of the total state of

the system that may lead to its subsequent service failure. It is important to

note that many errors do not reach the system’s external state and cause a

failure. A fault is active when it causes an error, otherwise it is dormant.

When the functional specification of a system includes a set of several

functions, the failure of one or more of the services implementing the

functions may leave the system in a degraded mode that still offers a subset

of needed services to the user. The specification may identify several such

modes, e.g., slow service, limited service, emergency service, etc. Here we

say that the system has suffered a partial failure of its functionality or

performance. Development failures and dependability failures that are

discussed in Section 4 also can be partial failures.
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2.3 Dependability and its Attributes

The general, qualitative, definition of dependability is: the ability to

deliver service that can justifiably be trusted. This definition stresses the

need for justification of trust. The alternate, quantitative, definition that

provides the criterion for deciding if the service is dependable is:

dependability of a system is the ability to avoid service failures that are

more frequent and more severe than is acceptable to the user(s).

As developed over the past three decades, dependability is an integrating

concept that encompasses the following attributes:

• availability: readiness for correct service;

• reliability: continuity of correct service;

• safety: absence of catastrophic consequences on the user(s) and the

environment;

• confidentiality: absence of unauthorized disclosure of information;

• integrity: absence of improper system alterations;

• maintainability: ability to undergo, modifications, and repairs.

Security is the concurrent existence of a) availability for authorized users

only, b) confidentiality, and c) integrity with ‘improper’ meaning

‘unauthorized’.

The dependability specification of a system must include the

requirements for the dependability attributes in terms of the acceptable

frequency and severity of failures for the specified classes of faults and a

given use environment. One or more attributes may not be required at all for

a given system.

The taxonomy of the attributes of dependability is presented in Section 5.

2.4 The Means to Attain Dependability

Over the course of the past fifty years many means to attain the attributes

of dependability have been developed. Those means can be grouped into

four major categories:

• fault prevention: means to prevent the occurrence or introduction of

faults;

• fault tolerance: means to avoid service failures in the presence of faults;

• fault removal: means to reduce the number and severity of faults;

• fault forecasting: means to estimate the present number, the future

incidence, and the likely consequences of faults.

Fault prevention and fault tolerance aim to provide the ability to deliver a

service that can be trusted, while fault removal and fault forecasting aim to

reach confidence in that ability by justifying that the functional and

dependability specifications are adequate and that the system is likely to

meet them.
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The schema of the complete taxonomy of dependable computing as

outlined in this section is shown in Figure 2.1.

Dependability

Attributes

Threats

Means

Availability

Reliability

Safety

Confidentiality

Integrity

Maintainability

Faults

Errors

Failures

Fault Prevention

Fault Tolerance

Fault Removal

Fault Forecasting

Figure 2.1: The dependability tree

3. THE TAXONOMY OF FAULTS

3.1 System Life Cycle: Phases and Environments

In this and the next section we present the taxonomy of threats that may

affect a system during its entire life. The life cycle of a system consists of

two phases: development and use.

The development phase includes all activities from presentation of the

user’s initial concept to the decision that the system has passed all

acceptance tests and is ready to be deployed for use in its user’s

environment. During the development phase the system is interacting with

the development environment and development faults may be introduced into

the system by the environment. The development environment of a system

consists of the following elements:

1. the physical world with its natural phenomena;

2. human developers, some possibly lacking competence or having

malicious objectives;

3. development tools: software and hardware used by the developers to

assist them in the development process;

4. production and test facilities.

The use phase of a system’s life begins when the system is accepted for

use and starts the delivery of its services to the users. Use consists of

alternating periods of correct service delivery (to be called service delivery),
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service outage, and service shutdown. A service outage is caused by a

service failure. It is the period when incorrect service (including no service

at all) is delivered at the service interface. A service shutdown is an

intentional halt of service by an authorized entity. Maintenance actions may

take place during all three periods of the use phase.

During the use phase the system interacts with its use environment and

may be adversely affected by faults originating in it. The use environment

consists of the following elements:

1. the physical world with its natural phenomena;

2. the administrators (including maintainers): entities (humans, other

systems) that have the authority to manage, modify, repair and use the

system; some authorized humans may lack competence or have malicious

objectives;

3. the users: entities that receive service at the service interfaces;

4. the providers: entities that deliver services to the system at its service

interfaces;

5. the fixed resources: entities that are not users, but provide specialized

services to the system, such as information sources (e.g., GPS, time, etc.),

communication links, power sources, cooling airflow, etc.

6. the intruders: malicious entities that have no authority but attempt to

intrude into the system and to alter service or halt it, alter the system’s

functionality or performance, or to access confidential information. They

are hackers, malicious insiders, agents of hostile governments or

organizations, and info-terrorists.

As used here, the term maintenance, following common usage, includes

not only repairs, but also all modifications of the system that take place

during the use phase of system life. Therefore maintenance is a development

process, and the preceding discussion of development applies to

maintenance as well. The various forms of maintenance are summarized in

Figure 3.1.

Maintenance

Corrective
Maintenance

Preventive
Maintenance

Adaptive
Maintenance

Augmentive
Maintenance

Removal of
reported faults

Discovery and 
removal of

dormant faults

Adjustment to
environmental

changes

Augmentation
of system’s

function

Repairs Modifications

Figure 3.1: The various forms of maintenance
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It is noteworthy that repair and fault tolerance are related concepts; the

distinction between fault tolerance and maintenance in this paper is that

maintenance involves the participation of an external agent, e.g., a

repairman, test equipment, remote reloading of software. Furthermore, repair

is part of fault removal (during the use phase), and fault forecasting usually

considers repair situations.

3.2 A Taxonomy of Faults

All faults that may affect a system during its life are classified according

to eight basic viewpoints that are shown in Figure 3.2. These fault classes are

called elementary faults.

Faults

Phase of creation
or occurrence

Development faults

Operational faults

System boundaries
Internal faults
External faults

Phenomenological cause
Natural faults

Human-Made faults

Dimension
Hardware faults
Software faults

Objective
Non-Malicious faults
Malicious faults

Intent
Non-Deliberate faults

Deliberate faults

Capacity
Accidental faults
Incompetence faults

Persistence
Permanent faults
Transient faults

Figure 3.2: The elementary fault classes

The classification criteria are as follows:

1. The phase of system life during which the faults originate:

• development faults that occur during (a) system development,

(b) maintenance during the use phase, and (c) generation of procedures to

operate or to maintain the system;

• operational faults that occur during service delivery of the use phase.

2. The location of the faults with respect to the system boundary:

• internal faults that originate inside the system boundary;

• external faults that originate outside the system boundary and propagate

errors into the system by interaction or interference.

3. The phenomenological cause of the faults:

• natural faults that are caused by natural phenomena without human

participation;

• human-made faults that result from human actions.
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4. The dimension in which the faults originate:

• hardware (physical) faults that originate in, or affect, hardware;

• software (information) faults that affect software, i.e., programs or data.

5. The objective of introducing the faults:

• malicious faults that are introduced by a human with the malicious

objective of causing harm to the system;

• non-malicious faults that are introduced without a malicious objective.

6. The intent of the human(s) who caused the faults:

• deliberate faults that are the result of a harmful decision;

• non-deliberate faults that are introduced without awareness.

7. The capacity of the human(s) who introduced the faults:

• accidental faults that are introduced inadvertently;

• incompetence faults that result from lack of professional competence by

the authorized human(s), or from inadequacy of the development

organization.

8. The temporal persistence of the faults:

• permanent faults whose presence is assumed to be continuous in time;

• transient faults whose presence is bounded in time.

If all combinations of the eight elementary fault classes were possible,

there would be 256 different combined fault classes. In fact, the number of

likely combinations is 31; they are shown in Figures 3.3 and 3.4.
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Figure 3.3: The classes of combined faults
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Faults
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Figure 3.4: Tree representation of combined faults

The combined faults of Figures 3.3 and 3.4 are shown to belong to three

major partially overlapping groupings:

• development faults that include all fault classes occurring during

development;

• physical faults that include all fault classes that affect hardware;

• interaction faults that include all external faults.

The boxes at the bottom of Figure 3.3 identify the names of some

illustrative fault classes.

3.3 On Human-Made Faults

The definition of human-made faults (that result from harmful human

actions) includes absence of actions when actions should be performed, i.e.,

omission faults, or simply omissions. Performing wrong actions leads to

commission faults.

The two basic classes of human-made faults are distinguished by the

objective of the developer or of the humans interacting with the system

during its use:

• malicious faults, introduced during either system development with the

intent to cause harm to the system during its use (#5-#6), or directly

during use (#22-#25)
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• non-malicious faults (#1-#4, #7-#21, #26-#31), introduced without

malicious objectives.

Malicious human-made faults are introduced by a developer with the

malicious objective to alter the functioning of the system during use. The

goals of such faults are: (1) to disrupt or halt service, (2) to access

confidential information, or (3) to improperly modify the system.  They are

grouped into two classes:

• potentially harmful components (#5, #6): Trojan horses, trapdoors, logic

or timing bombs;

• deliberately introduced software or hardware  vulnerabilities or human-

made faults..

The goals of malicious faults are: (1) to disrupt or halt service (thus

provoking denials-of-service), (2) to access confidential information, or

(3) to improperly modify the system. They fall into two classes:

1. Malicious logic faults, that encompass development faults such as

Trojan horses, logic or timing bombs , and trapdoors , as well as

operational faults such as viruses, worms, or zombies. Definitions for

these faults are as follows [Landwehr et al. 1994, Powell & Stroud 2003]:

• logic bomb: malicious logic that remains dormant in the host system till

a certain time or an event occurs, or certain conditions are met, and then

deletes files, slows down or crashes the host system, etc.

• Trojan horse: malicious logic performing, or able to perform, an

illegitimate action while giving the impression of being legitimate; the

illegitimate action can be the disclosure or modification of information

(attack against confidentiality or integrity) or a logic bomb;

• trapdoor: malicious logic that provides a means of circumventing

access control mechanisms;

• virus: malicious logic that replicates itself and joins another program

when it is executed, thereby turning into a Trojan horse; a virus can

carry a logic bomb;

• worm: malicious logic that replicates itself and propagates without the

users being aware of it; a worm can also carry a logic bomb;

• zombie: malicious logic that can be triggered by an attacker in order to

mount a coordinated attack.

2. Intrusion attempts, that are operational external faults. The external

character of intrusion attempts does not exclude the possibility that they

may be performed by system operators or administrators who are

exceeding their rights, and intrusion attempts may use physical means to

cause faults: power fluctuation, radiation, wire-tapping, etc.
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Non-malicious human-made faults can be partitioned according to the

developer’s intent:

• non-deliberate faults that are due to mistakes, that is, unintended actions

of which the developer, operator, maintainer, etc. is not aware,

• deliberate faults that are due to bad decisions, that is, intended actions

that are wrong and causes faults.

Deliberate, non-malicious, development faults result generally from

tradeoffs, either a) aimed at preserving acceptable performance, at

facilitating system utilization, or b) induced by economic considerations.

Deliberate, non-malicious interaction faults may result from the action of an

operator either aimed at overcoming an unforeseen situation, or deliberately

violating an operating procedure without having realized the possibly

damaging consequences of this action. Deliberate non-malicious faults share

the property that often it is recognized that they were faults only after an

unacceptable system behavior, thus a failure, has ensued; the developer(s) or

operator(s) did not realize that the consequence of their decision was a fault.

It is often considered that both mistakes and bad decisions are accidental,

as long as they are not made with malicious objectives. However, not all

mistakes and bad decisions by non-malicious persons are accidents. Some

very harmful mistakes and very bad decisions are made by persons who lack

professional competence to do the job they have undertaken. A complete

fault taxonomy should not conceal this cause of faults, therefore we

introduce a further partitioning of both classes of non-malicious human-

made faults into (1) accidental faults, and (2) incompetence faults. The

structure of this human-made fault taxonomy is shown in Figure 3.5.

Human-made Faults

Non-malicious MaliciousObjective

Classes 
of figures 
3.3 and 3.4

Intent Non-deliberate
(Mistake)

Deliberate
(Bad decision)

Deliberate

Accidental Incompetence Accidental IncompetenceCapacity

#1, #7 #2, #8 #3, #9 #4, #10 #5, #6Development Faults

Interaction faults #16, #26 #17, #28
#27, #28

#19, #29 #20, #21
#30, #31

#22 - #25

Figure 3.5: Classification of human-made faults

The question of how to recognize incompetence faults becomes

important when a mistake or a bad decision has consequences that lead to
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economic losses, injuries, or loss of human lives. In such cases independent

professional judgment by a board of inquiry or legal proceedings in a court

of law will decide if professional malpractice was involved.

Thus far the discussion of incompetence faults has dealt with individuals.

However, human-made efforts have failed because a team or an entire

organization did not have the organizational competence to do the job.

A good example of organizational incompetence is the human-made failure

of the AAS air traffic control system described in Section 4.2.

The purpose of this fault taxonomy is to present a complete and

structured view of the universe of faults. The explicit introduction of

incompetence faults in the taxonomy serves as a reminder that incompetence

at individual and organizational level is a serious threat in the human-made

development and use of dependable systems..

The non-malicious development faults exist in hardware and in software.

In hardware, especially in microprocessors, some development faults are

discovered after production has started [Avižienis & He 1999]. Such faults

are called “errata” and are listed in specification updates [Intel 2001]. The

finding of errata continues throughout the life of the processors, therefore

new specification updates are issued periodically. Some development faults

are introduced because human-made tools are faulty. The best known of

such “secondary” human-made faults is the Pentium division erratum

[Meyer 1994].

Designing a system always recurs to some extent to incorporating off-

the-shelf (OTS) components. The use of OTS components introduces

additional dependability problems. They may come with known

development faults, and may contain unknown faults as well (bugs,

vulnerabilities, undiscovered errata, etc.). Their specifications may be

incomplete or even incorrect. This problem is especially serious when legacy

OTS components are used that come from previously designed and used

systems, and must be retained in the new system because of the user’s needs.

Some development faults affecting software can cause software aging

[Huang et al. 1995], i.e., progressively accrued error conditions resulting in

performance degradation or complete failure. Examples are [Castelli et al.

2001] memory bloating and leaking, unterminated threads, unreleased file-

locks, data corruption, storage space fragmentation, accumulation of round-

off errors.

3.4 On Interaction Faults

Interaction faults occur during the use phase, therefore they are all

operational faults. They are caused by elements of the use environment (see

Section 3.1) interacting with the system, therefore they are all external. Most

classes originate due to some human action in the use environment, therefore
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they are human-made. They are fault classes #16-#31 in Figures 3.3 and 3.4.

An exception are external natural faults (#14-#15) caused by cosmic rays,

solar flares, etc. Here nature interacts with the system without human

participation.

A broad class of human-made operational faults are configuration

faults, i.e., wrong setting of parameters that can affect security, networking,

storage, middleware, etc. [Gray 2001]. Such faults can occur during

configuration changes performed during adaptive or augmentative

maintenance performed concurrently with system operation (e.g.,

introduction of a new software version on a network server); they are then

called reconfiguration faults [Wood 1994].

A common feature of interaction faults is that, in order to be ‘successful’,

they usually necessitate the prior presence of a vulnerability, i.e. an internal

fault that enables an external fault to harm the system. Vulnerabilities can be

development or operational faults; they can be malicious or non-malicious,

as can be the external fault that exploit them. There are interesting and

obvious similarities between an intrusion attempt and a physical external

fault that ‘exploits’ a lack of shielding. A vulnerability can result from a

deliberate development fault, for economic or for usability reasons, thus

resulting in limited protections, or even in their absence.

3.5 On Physical Faults

Physical faults shown on Figure 3.3 fall into three categories: purely

natural faults (#12-#15), physical development faults (#6-#11), and physical

interaction faults (#16-#23). Development and interaction faults have been

discussed in the preceding sections. The purely natural faults are either

internal (#12-#13), due to natural processes that cause physical deterioration,

or external (#14-#15), due to natural processes that originate outside the

system boundaries and cause physical interference by penetrating the

hardware boundary of the system (radiation, etc.) or by entering via service

interfaces (power transients, noisy input lines, etc.).

4. THE TAXONOMY OF FAILURES AND ERRORS

4.1 Service Failures

In Section 2.2 a service failure (called simply “failure” in this section) is

defined as an event that occurs when the delivered service deviates from

correct service. The different ways in which the deviation is manifested are a

system’s service failure modes. Each mode can have more than one service

failure severity.
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The occurrence of a failure was defined in Section 2 with respect to the

function of a system, not with respect to the description of the function

stated in the functional specification: a service delivery complying with the

specification may be unacceptable for the system user(s), thus uncovering a

specification fault, i.e., revealing the fact that the specification did not

adequately describe the system function(s). Such specification faults can be

either omissions or commission faults (misinterpretations, unwarranted

assumptions, inconsistencies, typographical mistakes). In such

circumstances, the fact that the event is undesired (and is in fact a failure)

may happen to be recognized only after its occurrence, for instance via its

consequences. So failures can be subjective, disputable, i.e., require

judgment to identify and characterize.

The failure modes characterize incorrect service according to four

viewpoints: a) the failure domain, b) the detectability of failures, c) the

consistency of failures, and d) the consequences of failures on the

environment.

The failure domain viewpoint leads us to distinguish:

• content failures: the content of the information delivered at the service

interface (i.e., the service content) deviates from implementing the

system function;

• timing failures: the time of arrival or the duration of the information

delivered at the service interface (i.e., the timing of service delivery)

deviates from implementing the system function.

These definitions can be specialized: a) the content can be in numerical

or non-numerical sets (e.g., alphabets, graphics, colors, sounds), and b) a

timing failure may be early or late, depending on whether the service is

delivered too early or too late. Late failures with correct information are

performance failures [Cristian 1991]; these can relate to the two aspects of

the notion of performance: responsiveness or throughput [Muntz 2000].

Failures when both information and timing are incorrect fall into two classes:

• halt failure, or simply halt, when the service is halted (external state

becomes constant, i.e., system activity, if there is any, is no longer

perceptible to the users); a special case of halt is silent failure, or simply

silence, when no service at all is delivered at the service interface (e.g.,

no messages are sent in a distributed system);

• erratic failures otherwise, i.e., when a service is delivered (not halted),

but is erratic (e.g., babbling).

Figure 4.1 summarizes the failure modes with respect to the failure

domain viewpoint.



16 Jean-Claude Laprie, Algirdas Avižienis, Brian Randell

Failure Domain
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(Correct
 timing)

Timing
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Failure

Early Timing
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Failure
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service

Late
service

Halted
service

Erratic
service

Figure 4.1: Failure modes with respect to the failure domain viewpoint

The detectability viewpoint addresses the signaling of losses of functions

to the user(s). The losses result in reduced modes of service. Signaling at the

service interface originates from detecting mechanisms in the system that

check the correctness of the delivered service. When the losses are detected

and signaled by a warning signal, then signaled failures occur. Otherwise,

they are unsignaled failures. The detecting mechanisms themselves have

two failure modes: a) signaling a loss of function when they no failure has

actually occurred, that is a false alarm, b) not signaling a function loss, that

is an unsignaled failure. Upon detecting the loss of one or more functions,

the system retains a specified reduced set of functions and signals a degraded

mode of service to the user(s). Degraded modes may range from minor

reductions to emergency service and safe shutdown.

The consistency of failures leads us to distinguish, when a system has

two or more users:

• consistent failures: the incorrect service is perceived identically by all

system users;

• inconsistent failures: some or all system users perceive differently

incorrect service1; inconsistent failures are usually called, after

[Lamppost et al. 1982], Byzantine failures.

Grading the consequences of the failures upon the system environment

enables failure severities to be defined. The failure modes are ordered into

severity levels, to which are generally associated maximum acceptable

probabilities of occurrence. The number, the labeling and the definition of

the severity levels, as well as the acceptable probabilities of occurrence, are

application-related, and involve the dependability attributes for the

considered application(s). Examples of criteria for determining the classes of

failure severities are:

• for availability, the outage duration,

• for safety, the possibility of human lives to be endangered,

• for confidentiality, the type of information that may be unduly disclosed,

1
Some users may actually perceive correct service.
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• for integrity, the extent of the corruption of data and the ability to recover

from these corruptions.

Generally speaking, two limiting levels can be defined according to the

relation between the benefit (in the broad sense of the term, not limited to

economic considerations) provided by the service delivered in the absence of

failure and the consequences of failures:

• minor failures, where the harmful consequences are of similar cost as

the benefit provided by correct service delivery;

• catastrophic failures, where the cost of harmful consequences is orders

of magnitude, or even incommensurably, higher than the benefit provided

by correct service delivery.

Figure 4.2 summarizes the failure modes.

Failures
Detectability Signalled failure

Unsignalled  failure

Consistency
Consistent failure 
Inconsistent failure

Consequences

Minor failure

Catastrophic failure

•••

Domain

Content failure
Early timing failure
Performance failure
Halt failure
Erratic failure

Figure 4.2: Failure modes

Systems that are designed and implemented so that they fail only in

specific modes of failure described in the dependability specification and

only to an acceptable extent, are fail-controlled systems, e.g., with stuck

output as opposed to delivering erratic values, silence as opposed to

babbling, consistent as opposed to inconsistent failures. A system whose

failures are to an acceptable extent halting failures only, is a fail-halt

system; the situations of stuck service and of silence lead respectively to

fail-passive systems and to fail-silent systems [Powell et al. 1988]. A

system whose failures are, to an acceptable extent, all minor ones is a fail-

safe system.

As defined in Section 2, delivery of incorrect service is an outage, which

lasts until service restoration. The outage duration may vary significantly,

depending on the actions involved for service restoration after a failure

occurred: a) automatic or operator-assisted recovery, restart or reboot, b)

corrective maintenance. Correction of development faults is usually

performed off-line, after service restoration, and the upgraded components
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resulting from fault correction are then introduced at some appropriate time,

with or without interruption of system operation. Preemptive interruption of

system operation for an upgrade or for preventive maintenance is a service

shutdown2.

4.2 Development Failures

A development failure causes the development process to be terminated

before the system is accepted for use. There are two aspects of development

failures:

1. Budget failure: the allocated funds are exhausted before the system

passes acceptance testing.

2. Schedule failure: the projected delivery schedule slips to a point in the

future where the system would be technologically obsolete or

functionally inadequate for the user’s needs.

The principal causes of development failures are:

1. Too numerous specification changes initiated by the user. They have the

same impact on the development process as the detection of specification

faults, requiring re-design with possibility of new development faults

being introduced.

2. Inadequate design. The functionality and/or performance goals cannot be

met.

3. Too many faults. Introduction of an excessive number of development

faults and/or inadequate capability of fault removal during development.

4. Insufficient dependability. The dependability forecasting by analytical

and experimental means shows that the specified dependability goals

cannot be met.

5. Faulty (too low) estimates of development costs, either in funds, or in

time needed, or both. They are usually due to an underestimate of the

complexity of the system to be developed.

Budget and/or schedule overruns occur when the development is

completed, but the funds or time needed to complete the effort exceed the

original estimates. The overruns are partial development failures,

i.e., failures of lesser severity than project termination. Another form of

partial development failure is downgrading: the developed system is

delivered with less functionality, lower performance, or is predicted to have

lower dependability than required in the original system specification.

Development failures, overruns, and downgrades have a very negative

impact on the user community, as exemplified by Figure 4.3.

2
Service shutdowns are also called planned outage, as opposed to outages consecutive to

failures, that are then called unplanned outages.



Dependability and Its Threats: A Taxonomy 19

1994 2002

Number of surveyed projects 8,380 13,522

Successful projects (completed on-time and on-budget, with all features
and functions as initially specified)

16% 34%

Challenged projects (completed and operational but over-budget, over the
time estimate, and offers fewer features and functions than originally
specified)

53% 51%

Canceled projects 31% 15%

Overruns for challenged projects 89% 82%

Left functions for challenged projects 61% 52%

Total estimated budget for software projects in the USA, in $ billion 250 225

Estimated lost value for software projects in the USA, in $ billion 81 38

(a) Large software projects [www.standishgroup.com]

The Advanced Automation System (AAS) was intended to replace the aging air traffic control

systems in the USA [Hunt & Kloster 1987]. In 1984 the FAA awarded competitive design phase

contracts to IBM and Hughes Aircraft Co. In July 1988 an acquisition phase contract of $3.5 billion

was awarded to IBM, and the program cost, including supporting efforts, was estimated by the FAA

to be $4.8 billion. In 1994 FAA estimated that the program would cost $7 billion, with key segments

as much as eight years behind schedule. The AAS as originally conceived, was terminated in June

1994, and an investigation showed that $2.6 billion were spent, of which $1.5 billion was completely

wasted. Of the five program segments, only the simplest one was completed, one was restructured

under a new contract, and three were terminated. The main causes of development failure were

reported to be (1) overambitious plans, (2) poor oversight of software development, (3) FAA’s

inability to stabilize requirements, and (4) a poor statement of work in the original contract

[US DOT, 1998].   

(b) The AAS system

Figure 4.3: Development failures

4.3 Dependability Failures

It is expected that faults of various kinds will affect the system during its

use phase. The faults may cause unacceptably degraded performance or total

failure to deliver the specified service. For this reason a dependability

specification is agreed upon that states the goals for each dependability

attribute: availability, reliability, safety, confidentiality, integrity, and

manageability.

 The specification explicitly identifies the classes of faults that are

expected and the use environment in which the system will operate. The

dependability specification may also require safeguards against certain

undesirable or dangerous conditions. Furthermore, the inclusion of specific

fault prevention or fault tolerance techniques may be required by the user.

A dependability failure occurs when the given system fails more

frequently or more severely than acceptable to the user(s).
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Dependability and cost are not part of the functional specification. For

this reason we call them the meta-functional specification. We object to the

often used term “non-functional”, since that also means “failed”. A complete

system specification consists of both, as shown in Figure 4.4.

Functionality

Performance

Dependability

Cost

Functional Specification

Meta-Functional Specification

System Specification

Figure 4.4: Elements of the system specification

The dependability specification can contain also faults. Omission faults

can occur in description of the use environment or in choice of the classes of

faults to be prevented or tolerated. Another class of faults is the unjustified

choice of very high requirements for one or more attributes that raises the

cost of development and may lead to a cost overrun or even a development

failure. For example, the AAS complete outage limit of 3 seconds per year

was changed to 5 minutes per year for the new contract in 1994

[US DOT 1998].

4.4 Errors

An error has been defined in Section 2.2 as the part of a system’s total

state that may lead to a failure — a failure occurs when the error causes the

delivered service to deviate from correct service. The cause of the error has

been called a fault.

An error is detected if its presence is indicated by an error message or

error signal. Errors that are present but not detected are latent errors.

Since a system consists of a set of interacting components, the total state

is the set of its component states. The definition implies that a fault

originally causes an error within the state of one (or more) components, but

service failure will not occur as long as the external state of that component

is not part of the external state of the system. Whenever the error becomes a

part of the external state of the component, a service failure of that

component occurs, but the error remains internal to the entire system

Whether or not an error will actually lead to a failure depends on two

factors:

1. The structure of the system, and especially the nature of any redundancy

that exists in it:

• intentional redundancy, introduced to provide fault tolerance, that is

explicitly intended to prevent an error from leading to service failure,
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• unintentional redundancy (it is in practice difficult if not impossible to

build a system without any form of redundancy) that may have the same

— presumably unexpected — result as intentional redundancy.

2. The behavior of the system: the part of the state that contains an error may

never be needed for service, or an error may be eliminated (e.g., when

overwritten) before it leads to a failure.

A convenient classification of errors is to describe them in terms of the

elementary service failures that they cause, using the terminology of

Section 4.1: content vs. timing errors, detected vs. latent errors, consistent vs.

inconsistent errors when the service goes to two or more users, minor vs.

catastrophic errors.

Some faults (e.g., a burst of electromagnetic radiation) can

simultaneously cause errors in more than one component. Such errors are

called multiple related errors. Single errors are errors that affect one

component only.

4.5 The Pathology of Failure: Relationship between

Faults, Errors and Failures

The creation and manifestation mechanisms of faults, errors, and failures

are illustrated by Figure 4.5, and summarized as follows:

1. A fault is active when it produces an error, otherwise it is dormant. An

active fault is either a) an internal fault that was previously dormant and

that has been activated by the computation process or environmental

conditions, or b) an external fault. Fault activation is the application of

an input (the activation pattern) to a component that causes a dormant

fault to become active. Most internal faults cycle between their dormant

and active states.

2. Error propagation within a given component (i.e., internal propagation)

is caused by the computation process: an error is successively

transformed into other errors. Error propagation from one component

(C1) to another component (C2) that receives service from C1 (i.e.,

external propagation) occurs when, through internal propagation, an error

reaches the service interface of component C1. At this time, service

delivered by C2 to C1 becomes incorrect, and the ensuing failure of C1

appears as an external fault to C2 and propagates the error into C2.

3. A service failure occurs when an error is propagated to the service

interface and causes the service delivered by the system to deviate from

correct service. A failure of a component causes a permanent or transient

fault in the system that contains the component. Failure of a system

causes a permanent or transient external fault for the other system(s) that

interact with the given system.
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Figure 4.5: Error propagation

These mechanisms enable the ‘fundamental chain’ to be completed, as

indicated by Figure 4.6.

errorfault failure fault
activation propagation causation ……

Figure 4.6: The fundamental chain of dependability threats

The arrows in this chain express a causality relationship between faults,

errors and failures. They should be interpreted generically: by propagation,

several errors can be generated before a failure occurs. Propagation, and thus

instantiation(s) of the chain, can occur via the two fundamentals dimensions

associated to the definitions of systems given in Section 2.1: interaction and

composition.

Some illustrative examples of fault pathology are given in Figure 4.7.

From those examples, it is easily understood that fault dormancy may vary

considerably, depending upon the fault, the given system's utilization, etc.

The ability to identify the activation pattern of a fault that caused one or

more errors is the fault activation reproducibility. Faults can be

categorized according to their activation reproducibility: faults whose

activation is reproducible are called solid, or hard, faults, whereas faults

whose activation is not systematically reproducible are elusive, or soft,

faults. Most residual development faults in large and complex software are

elusive faults: they are intricate enough that their activation conditions

depend on complex combinations of internal state and external requests, that

occur rarely and can be very difficult to reproduce [Gray 86]. Other

examples of elusive faults are:

• ‘pattern sensitive’ faults in semiconductor memories, changes in the

parameters of a hardware component (effects of temperature variation,

delay in timing due to parasitic capacitance, etc.);
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• conditions — affecting either hardware or software — that occur when

the system load exceeds a certain level, causing e.g. marginal timing and

synchronization.

• A short circuit occurring in an integrated circuit is a failure (with respect to the function of the

circuit); the consequence (connection stuck at a Boolean value, modification of the circuit

function, etc.) is a fault that will remain dormant as long as it is not activated. Upon activation

(invoking the faulty component and uncovering the fault by an appropriate input pattern), the fault

becomes active and produces an error, which is likely to propagate and create other errors. If and

when the propagated error(s) affect(s) the delivered service (in information content and/or in the

timing of delivery), a failure occurs.

• The result of an error by a programmer leads to a failure to write the correct instruction or data,

that in turn results in a (dormant) fault in the written software (faulty instruction(s) or data); upon

activation (invoking the component where the fault resides and triggering the faulty instruction,

instruction sequence or data by an appropriate input pattern) the fault becomes active and

produces an error; if and when the error affects the delivered service (in information content

and/or in the timing of delivery), a failure occurs. This example is not restricted to accidental

faults: a logic bomb is created by a malicious programmer; it will remain dormant until activated

(e.g. at some predetermined date); it then produces an error that may lead to a storage overflow

or to slowing down the program execution; as a consequence, service delivery will suffer from

a so-called denial-of-service.

• The result of an error by a specifier’ leads to a failure to describe a function, that in turn results in

a fault in the written specification, e.g. incomplete description of the function. The implemented

system therefore does not incorporate the missing (sub-)function. When the input data are such

that the service corresponding to the missing function should be delivered, the actual service

delivered will be different from expected service, i.e., an error will be perceived by the user, and

a failure will thus occur.

• An inappropriate human-system interaction performed by an operator during the operation

of the system is an external fault (from the system viewpoint); the resulting altered processed

data is an error; etc.

• An error in reasoning leads to a maintenance or operating manual writer's failure to write correct

directives, that in turn results in a fault in the corresponding manual (faulty directives) that will remain

dormant as long as the directives are not acted upon in order to address a given situation, etc.

Figure 4-7: Examples illustrating fault pathology

The similarity of the manifestation of elusive development faults and of

transient physical faults leads to both classes being grouped together as

intermittent faults. Errors produced by intermittent faults are usually

termed soft errors.

Situations involving multiple faults and/or failures are frequently

encountered. Given a system with defined boundaries, a single fault is a

fault caused by one adverse physical event or one harmful human action.

Multiple faults are two or more concurrent, overlapping, or sequential

single faults whose consequences, i.e., errors, overlap in time, that is, the

errors due to these faults are concurrently present in the system.

Consideration of multiple faults leads one to distinguish a) independent

faults, that are attributed to different causes, and b) related faults, that are

attributed to a common cause. Related faults generally cause similar errors,
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i.e., errors that cannot be distinguished by whatever detection mechanisms

are being employed, whereas independent faults usually cause distinct

errors. However, it may happen that independent faults lead to similar errors

[Avižienis & Kelly 1984], or that related faults lead to distinct errors. The

failures caused by similar errors are common-mode failures.

5- DEPENDABILITY AND ITS ATTRIBUTES

In Section 2, we have presented two alternate definitions of dependability:

1. A qualitative definition: the ability to deliver service that can justifiably

be trusted.

2. A quantitative definition: the ability of a system to avoid failures that are

more frequent or more severe than is acceptable to the user(s).

The definitions of dependability that exist in current standards differ from

our definitions. Two such differing definitions are:

• “The collective term used to describe the availability performance and its

influencing factors: reliability performance, maintainability performance

and maintenance support performance” [ISO 1992].

• “The extent to which the system can be relied upon to perform

exclusively and correctly the system task(s) under defined operational

and environmental conditions over a defined period of time, or at a given

instant of time” [IEC 1992].

The ISO definition is clearly centered upon availability. This is no

surprise as this definition can be traced back to the definition given by the

international organization for telephony, the CCITT [CCITT 1984], at a time

when availability was the main concern to telephone operating companies.

However, the willingness to grant dependability with a generic character is

noteworthy, since it goes beyond availability as it was usually defined, and

relates it to reliability and maintainability. In this respect, the ISO/CCITT

definition is consistent with the definition given in [Hosford 1960] for

dependability: “the probability that a system will operate when needed”. The

second definition, from [IEC 1992], introduces the notion of reliance, and as

such is much closer to our definitions.

Other concepts similar to dependability exist, as survivability and

trustworthiness. They are presented and compared to dependability in

Figure 5.1.

A side-by-side comparison leads to the conclusion that all three concepts

are essentially equivalent in their goals and address similar threats.

Trustworthiness omits the explicit listing of internal faults, although its goal

implies that they also must be considered. Such faults are implicitly

considered in survivability via the (component) failures. Survivability was

present in the late sixties in the military standards, where it was defined as a
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system capacity to resist hostile environments so that the system can fulfill

its mission (see, e.g., MIL-STD-721 or DOD-D-5000.3); it was redefined

recently, as described in Figure 5.1. Trustworthiness was used in a study

sponsored by the National Research Council, referenced in Figure 5.1. One

difference must be noted. Survivability and trustworthiness have the threats

explicitly listed in the definitions, while both definitions of dependability

leave the choice open: the threats can be either all the faults of Figure 3.3

and Figure 3.4, or a selected subset of them, e.g., ‘dependability with respect

to development faults’, etc.

Concept Dependability Survivability Trustworthiness

Goal 1) ability to deliver service
that can justifiably be
trusted

2) ability of a system to
avoid failures that are
more frequent or more
severe than is acceptable
to the user(s)

capability of a system to
fulfill its mission in a
timely manner

assurance that a system
will perform as expected

Threats
present

1) development faults
(e.g., software flaws,
hardware errata,
malicious logic)

2) physical faults (e.g.,
production defects,
physical deterioration)

3) interaction faults (e.g.,
physical interference,
input mistakes, attacks,
including viruses, worms,
intrusions)

1) attacks (e.g.,
intrusions, probes, denials
of service)

2) failures (internally
generated events due to,
e.g., software design
errors, hardware
degradation, human
errors, corrupted data)

3) accidents (externally
generated events such as
natural disasters)

1) hostile attacks (from
hackers or insiders)

2) environmental
disruptions (accidental
disruptions, either man-
made or natural)

3) human and operator
errors (e.g., software
flaws, mistakes by human
operators)

Reference This paper “Survivable network
systems” [Ellison et al.

1999]

“Trust in cyberspace”
[Schneider 1999]

Figure 5.1: Dependability, survivability and trustworthiness

The attributes of dependability that have been defined in Section 2 may

be of varying importance depending on the application intended for the

given computing system: availability, integrity and maintainability are

generally required, although to a varying degree depending on the

application, whereas reliability, safety, confidentiality may or may not be

required according to the application. The extent to which a system

possesses the attributes of dependability should be considered in a relative,

probabilistic, sense, and not in an absolute, deterministic sense: due to the

unavoidable presence or occurrence of faults, systems are never totally

available, reliable, safe, or secure.

The definition given for integrity — absence of improper system state

alterations — goes beyond the usual definitions, that a) relate to the notion

of authorized actions only, and, b) focus on information (e.g., prevention of
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the unauthorized amendment or deletion of information [CEC 1991],

assurance of approved data alterations [Jacob 1991]): a) naturally, when a

system implements an authorization policy, ‘improper’ encompasses

‘unauthorized’, b) ‘improper alterations’ encompass actions that prevent

(correct) upgrades of information, and c) ‘system state’ includes system

modifications or damages.

The definition given for maintainability intentionally goes beyond

corrective and preventive maintenance, and encompasses the other forms of

maintenance defined in section 3, i.e., adaptive and augmentative

maintenance.

Security has not been introduced as a single attribute of dependability.

This is in agreement with the usual definitions of security, that view it as a

composite notion, namely “the combination of confidentiality, the prevention

of the unauthorized disclosure of information, integrity, the prevention of the

unauthorized amendment or deletion of information, and availability, the

prevention of the unauthorized withholding of information” [CEC 1991,

Pfleeger 2000]. A unified definition for security  is: the absence of

unauthorized access to, or handling of, system state. The relationship

between dependability and security is illustrated by Figure 5.2.

SecurityDependability

Availability
Reliability

Safety

Confidentiality
Integrity

Maintainability

Authorized
users

Figure 5.2: Dependability and security

In their definitions, availability and reliability emphasize the avoidance

of failures, while safety and security emphasize the avoidance of a specific

class of failures (catastrophic failures, unauthorized access or handling of

information, respectively). Reliability and availability are thus closer to each

other than they are to safety on one hand, and to security on the other;

reliability and availability can thus be grouped together, and be collectively

defined as the avoidance or minimization of service outages.

Besides the attributes defined in Section 2, and discussed above, other,

secondary, attributes can be defined, which refine or specialize the primary

attributes as defined in Section 2. An example of specializing secondary

attribute is robustness, i.e., dependability with respect to external faults, that

characterizes a system reaction to a specific class of faults.

The notion of secondary attributes is especially relevant for security,

when we distinguish among various types of information [Cachin et al.
2000]. Examples of such secondary attributes are:
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• accountability: availability and integrity of the identity of the person

who performed an operation,

• authenticity: integrity of a message content and origin, and possibly of

some other information, such as the time of emission,

• non-repudiability: availability and integrity of the identity of the sender

of a message (non-repudiation of the origin), or of the receiver (non-

repudiation of reception).

Dependability classes are generally defined via the analysis of failure

frequencies and severities, and of outage durations, for the dependabilty

attributes that are of concern for a given application. This analysis may be

conducted directly, or indirectly, via risk assessment (see, e.g., [Grigonis

2001] for availability, [RTCA/EUROCAE 1992] for safety, and [ISO/IEC

1999] for security).

The variations in the emphasis placed on the different attributes of

dependability directly influence the balance of the techniques (fault

prevention, tolerance, removal and forecasting) to be employed in order to

make the resulting system dependable. This problem is all the more difficult

as some of the attributes are conflicting (e.g., availability and safety,

availability and security), necessitating that trade-offs be made. Regarding

the three main development dimensions of a computing system besides

functionality, i.e., cost, performance and dependability, the problem is

further exacerbated by the fact that the dependability dimension is less

understood than the cost-performance development space [Siewiorek &

Johnson 1992].

6. CONCLUSION

Increasingly, individuals and organizations are developing or procuring

sophisticated computing systems on whose services they need to place great

reliance — whether to service a set of cash dispensers, control a satellite

constellation, an airplane, a nuclear plant, or a radiation therapy device, or to

maintain the confidentiality of a sensitive data base. In differing

circumstances, the focus will be on differing properties of such services —

e.g., on the average real-time response achieved, the likelihood of producing

the required results, the ability to avoid failures that could be catastrophic to

the system's environment, or the degree to which deliberate intrusions can be

prevented. The notion of dependability provides a very convenient means of

subsuming these various concerns within a single conceptual framework.

Dependability includes as special cases such properties as availability,

reliability, safety, confidentiality, integrity, maintainability. It also provides

the means of addressing the problem that what a user usually needs from a

system is an appropriate balance of these properties.
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A major strength of the dependability concept, as it is formulated in this

paper, is its integrative nature, that enables to put into perspective the more

classical notions of reliability, availability, safety, security, maintainability,

that are then seen as attributes of dependability. The fault-error-failure model

is central to the understanding and mastering of the various threats that may

affect a system, and it enables a unified presentation of these threats, while

preserving their specificities via the various fault classes that can be defined.

The model provided for the means for dependability is extremely useful, as

those means are much more orthogonal to each other than the more classical

classification according to the attributes of dependability, with respect to

which the design of any real system has to perform trade-offs due to the fact

that these attributes tend to conflict with each other.

What has been presented is an attempt to document a minimum

consensus within the community in order to facilitate fruitful technical

interactions. The associated terminology effort is not an end in itself: words

are only of interest because they unequivocally label concepts, and enable

ideas and viewpoints to be shared.

REFERENCES
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